Advertisement

Porous Carbon-Based Nanocomposites Containing Fe2P Nanoparticles as Promising Materials for Supercapacitor Electrodes

  • Andrés Cuña
  • Elen Leal da Silva
  • Célia F. Malfatti
  • Gustavo R. Gonçalves
  • Miguel A. SchettinoJr.
  • Jair C. C. FreitasEmail author
Article
  • 11 Downloads

Abstract

Pseudocapacitive materials can enhance the energy storage performance of supercapacitors by making use of surface redox reactions. In recent years, different iron compounds have been investigated as pseudocapacitive materials, showing promising features for supercapacitor electrode applications. Carbon nanocomposites containing iron/phosphorus compounds have been prepared from porous carbon, followed by thermal treatment at different temperatures (700°C to 1000°C). The obtained supercapacitor electrodes were evaluated by electrochemical analyses using sulfuric acid electrolyte. The as-prepared nanocomposite contained nanostructured iron oxides or oxyhydroxides, whereas the nanocomposites prepared at 700°C to 900°C were composed of nanostructured iron phosphates. On the other hand, heat treatment at 1000°C caused the formation of nanocrystalline iron phosphides (mostly Fe2P nanoparticles). The Fe-containing samples showed enhanced specific capacitance (246 F g−1 to 447 F g−1 at 10 A g−1), which can be related to the pseudocapacitive contribution of the iron compounds. The sample heat treated at 1000°C exhibited favorable electrochemical performance, showing high electrical capacitance and good rate capability at 40 A g−1. These results reveal that porous carbon/iron phosphide nanocomposites are promising materials for use in supercapacitor electrode applications.

Keywords

Fe2P nanoparticles porous carbon materials supercapacitor electrodes pseudocapacitors nanostructured compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    J.M. Miller, Ultracapacitor applications. Power and Energy Series, 59 (The Institution of Engineering and Technology, London, 2011).Google Scholar
  2. 2.
    C. Breitkopf and K. Swider-Lyons, Handbook of Electrochemical Energy (Berlin: Springer, 2017).CrossRefGoogle Scholar
  3. 3.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York: Kluwer Academic/Plenum, 1999).CrossRefGoogle Scholar
  4. 4.
    F. Béguin and E. Frąckowiak, Supercapacitors: Materials, Systems, and Applications (Weinheim: Wiley, 2013).CrossRefGoogle Scholar
  5. 5.
    A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources 157, 11 (2006).CrossRefGoogle Scholar
  6. 6.
    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
  7. 7.
    A. Cuña, N. Tancredi, J. Bussi, A.C. Deiana, M.F. Sardella, V. Barranco, and J.M. Rojo, Waste Biomass Valor. 5, 305 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Cuña, N. Tancredi, J. Bussi, V. Barranco, T.A. Centeno, A. Quevedo, and J.M. Rojo, J. Electrochem. Soc. 161, A1806 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Liu, S. Yu, Y. Shen, H. Chen, Z. Shen, S. Zhao, S. Fu, Y. Yu, and B. Bao, Ind. Eng. Chem. Res. 54, 12570 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Cuña, M.R. Ortega Vega, E. Leal da Silva, N. Tancredi, C. Radtke, and C.F. Malfatti, Int. J. Hydrogen Energy 41, 12127 (2016).CrossRefGoogle Scholar
  11. 11.
    Q. Tian, X. Wang, X. Xu, M. Zhang, L. Wang, X. Zhao, Z. An, H. Yao, and J. Gao, Mater. Chem. Phys. 213, 267 (2018).CrossRefGoogle Scholar
  12. 12.
    Z. Gao, Y. Zhang, N. Song, and X. Li, Mater. Res. Lett. 5, 89 (2017).CrossRefGoogle Scholar
  13. 13.
    X. Zhao, W. Li, F. Kong, H. Chen, Z. Wang, S. Liu, and C. Jin, Mater. Chem. Phys. 219, 461 (2018).CrossRefGoogle Scholar
  14. 14.
    O. Ioannidou and A. Zabanioutou, Renew. Sustain. Energy Rev. 11, 1966 (2007).CrossRefGoogle Scholar
  15. 15.
    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
  16. 16.
    M.A. Teixeira, Biomass Bioenergy 32, 857 (2008).CrossRefGoogle Scholar
  17. 17.
    J.C.C. Freitas, F.G. Emmerich, and T.J. Bonagamba, Chem. Mater. 12, 711 (2000).CrossRefGoogle Scholar
  18. 18.
    F.G. Emmerich and C.A. Luengo, Biomass Bioenergy 10, 41 (1996).CrossRefGoogle Scholar
  19. 19.
    G.R. Gonçalves, M.A. Schettino Jr, M.K. Morigaki, E. Nunes, A.G. Cunha, F.G. Emmerich, E.C. Passamani, E. Baggio-Saitovitch, and J.C.C. Freitas, J. Nanopart. Res. 17, 303 (2015).CrossRefGoogle Scholar
  20. 20.
    T.R. Lopes, D.F. Cipriano, G.R. Gonçalves, H.A. Honorato, M.A. Schettino Jr, A.G. Cunha, F.G. Emmerich, and J.C.C. Freitas, J. Chem. Environ. Eng. 5, 6016 (2017).CrossRefGoogle Scholar
  21. 21.
    H. Marsh and F. Rodríguez-Reinoso, Activated Carbon (Oxford: Elsevier, 2006).CrossRefGoogle Scholar
  22. 22.
    J.C.C. Freitas, M.A. Schettino Jr, A.G. Cunha, F.G. Emmerich, A.C. Bloise, E.R. de Azevedo, and T.J. Bonagamba, Carbon 45, 1097 (2007).CrossRefGoogle Scholar
  23. 23.
    A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, and M. Wisniewski, Carbon 46, 2113 (2008).CrossRefGoogle Scholar
  24. 24.
    D. Hulicova-Jurcakova, A.M. Puziy, O.I. Poddubnaya, F. Suárez-García, J.M.D. Tascón, and G.Q. Lu, J. Am. Chem. Soc. 131, 5026 (2009).CrossRefGoogle Scholar
  25. 25.
    G.-H. Lee, M.R. Jo, K. Zhang, and Y.-M. Kang, J. Mater. Chem. A 5, 3683 (2017).CrossRefGoogle Scholar
  26. 26.
    X. Sun, P. Cheng, H. Wang, H. Xu, L. Dang, Z. Liu, and Z. Lei, Carbon 92, 1 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Zhang, S. Ali, F. Liu, A. Ali, K. Wang, and X. Wang, J. Electron. Mater. 48, 4196 (2019).CrossRefGoogle Scholar
  28. 28.
    V. Subramanian, S.C. Hall, P.H. Smith, and B. Rambabu, Solid State Ion. 175, 511 (2004).CrossRefGoogle Scholar
  29. 29.
    Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu, and Y. Gong, J. Mater. Chem. A 4, 9977 (2016).CrossRefGoogle Scholar
  30. 30.
    P. Wang, Y.-J. Zhao, L.-X. Wen, J.-F. Chen, and Z.-G. Lei, Ind. Eng. Chem. Res. 53, 20116 (2014).CrossRefGoogle Scholar
  31. 31.
    L. O’Neill, C. Johnston, and P.S. Grant, J. Power Sources 274, 907 (2015).CrossRefGoogle Scholar
  32. 32.
    G. Zhang, X. Xiao, B. Li, P. Gu, H. Xue, and H. Pang, J. Mater. Chem. A 5, 8155 (2017).CrossRefGoogle Scholar
  33. 33.
    N.M. Ndiaye, T.M. Masikhwa, B.D. Ngom, M.J. Madito, K.O. Oyedotun, J.K. Dangbegnon, and N. Manyala, Mater. Chem. Phys. 214, 192 (2018).CrossRefGoogle Scholar
  34. 34.
    S. Nilmoung, P. Kidkhunthod, and S. Maensiri, Mater. Chem. Phys. 220, 190 (2018).CrossRefGoogle Scholar
  35. 35.
    P. Zhao, W. Li, G. Wang, B. Yu, X. Li, J. Bai, and Z. Ren, J. Alloys Compd. 604, 87 (2014).CrossRefGoogle Scholar
  36. 36.
    N. Sinan and E. Unur, Mater. Chem. Phys. 183, 571 (2016).CrossRefGoogle Scholar
  37. 37.
    F. Wang, Y. Zeng, D. Zheng, C. Li, P. Liu, X. Lu, and Y. Tong, Carbon 103, 56 (2016).CrossRefGoogle Scholar
  38. 38.
    J. Sun, P. Zan, X. Yang, L. Ye, and L. Zhao, Electrochim. Acta 215, 483 (2016).CrossRefGoogle Scholar
  39. 39.
    A. Adhikari, R. Oraon, S.K. Tiwari, P. Saren, J.-H. Lee, N.H. Kim, and G.C. Nayak, Ind. Eng. Chem. Res. 57, 1350 (2018).CrossRefGoogle Scholar
  40. 40.
    R. Mohan and R. Paulose, J. Electron. Mater. 47, 6878 (2018).CrossRefGoogle Scholar
  41. 41.
    J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, and Y. Liu, Nanoscale 3, 5034 (2011).CrossRefGoogle Scholar
  42. 42.
    Y. Wang, L. Zhang, H. Li, Y. Wang, L. Jiao, H. Yuan, L. Chen, H. Tang, and X. Yang, J. Power Sources 253, 360 (2014).CrossRefGoogle Scholar
  43. 43.
    E.C. Vermisoglou, E. Devlin, T. Giannakopoulou, G. Romanos, N. Boukos, V. Psycharis, C. Lei, C. Lekakou, D. Petridis, and C. Trapalis, J. Alloys Compd. 590, 102 (2014).CrossRefGoogle Scholar
  44. 44.
    A. Śliwak, A. Moyseowicz, and G. Gryglewicz, J. Mater. Chem. A 5, 5680 (2017).CrossRefGoogle Scholar
  45. 45.
    J. Schwarz, C. Contescu, and A. Contescu, Chem. Rev. 95, 477 (1995).CrossRefGoogle Scholar
  46. 46.
    G.L. Viali, G.R. Gonçalves, E.C. Passamani, J.C.C. Freitas, M.A. Schettino Jr, A.Y. Takeuchi, and C. Larica, J. Magn. Magn. Mater. 401, 173 (2016).CrossRefGoogle Scholar
  47. 47.
    S. Brunauer, P.H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).Google Scholar
  48. 48.
    S. Lowell, J.E. Schields, M.A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Dordrecht: Kluwer Academic, 2004).CrossRefGoogle Scholar
  49. 49.
    Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, and Z. Luo, Carbon 45, 1686 (2007).CrossRefGoogle Scholar
  50. 50.
    ICDD (2010). Powder Diffraction File Inorganic and Organic Data Book, edited by Dr. Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA USA), Set 60.Google Scholar
  51. 51.
    S. Chaudhari, D. Bhattacharjya, and J.-S. Yu, RSC Adv. 3, 25120 (2013).CrossRefGoogle Scholar
  52. 52.
    A.K. Mishra and S. Ramaprabhu, J. Phys. Chem. C 115, 14006 (2011).CrossRefGoogle Scholar
  53. 53.
    B.P. Prasanna, D.N. Avadhani, M.S. Raghu, and K. Yogesh Kumar, Mater. Today Commun. 12, 72 (2017).CrossRefGoogle Scholar
  54. 54.
    K.K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H.R. Tan, E.S. Tok, K.P. Loh, W.S. Chin, and C.H. Sow, Nanoscale 4, 2958 (2012).CrossRefGoogle Scholar
  55. 55.
    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
  56. 56.
    Y. Mateyshina, A. Ulihin, A. Samarov, C. Barnakov, and N. Uvarov, Solid State Ion. 251, 59 (2013).CrossRefGoogle Scholar
  57. 57.
    J. Chen, J. Xu, S. Zhou, N. Zhao, and C. Wong, Nano Energy 15, 719 (2015).CrossRefGoogle Scholar
  58. 58.
    S. Ghasemi and F. Ahmadi, J. Power Sources 289, 129 (2015).CrossRefGoogle Scholar
  59. 59.
    Y.-G. Lin, Y.-K. Hsu, Y.-C. Lin, and Y.-C. Chen, Electrochim. Acta 216, 287 (2016).CrossRefGoogle Scholar
  60. 60.
    D. Bellavance, J. Mikkelsen, and A. Wold, J. Solid State Chem. 2, 285 (1970).CrossRefGoogle Scholar
  61. 61.
    Y. Zhang, H. Zhang, Y. Feng, L. Liu, and Y. Wang, ACS Appl. Mater. Interfaces 7, 26684 (2015).CrossRefGoogle Scholar
  62. 62.
    J. Yang, Y. Ouyang, H. Zhang, H. Xu, Y. Zhang, and Y. Wang, J. Mater. Chem. A 4, 9923 (2016).CrossRefGoogle Scholar
  63. 63.
    M. Liu, L. Yang, T. Liu, Y. Tang, S. Luo, C. Liu, and Y. Zeng, J. Mater. Chem. A 5, 8608 (2017).CrossRefGoogle Scholar
  64. 64.
    K. Wang, J. Tan, Z. Lu, S. Chen, X. She, H. Zhang, and D. Yang, Int. J. Hydrogen Energy 43, 13939 (2018).CrossRefGoogle Scholar
  65. 65.
    M. Yan, Y. Yao, J. Wen, W. Fu, L. Long, M. Wang, X. Liao, G. Yin, Z. Huang, and X. Chen, J. Alloys Compd. 641, 170 (2015).CrossRefGoogle Scholar
  66. 66.
    K.B. Gandrud, O. Nilsen, and H. Fjellvåg, J. Power Sources 306, 454 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Area Fisicoquímica, DETEMA, Facultad de QuímicaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.LAPEC/PPGE3MUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Laboratory of Carbon and Ceramic Materials, Department of PhysicsFederal University of Espírito SantoVitóriaBrazil

Personalised recommendations