NDR Behavior of a Phosphorous-Doped Double-Gate MoS2 Armchair Nanoribbon Field Effect Transistor

  • Durgesh Laxman Tiwari
  • K. SivasankaranEmail author


This paper presents the negative differential resistance (NDR) behavior of an MoS2 armchair nanoribbon double-gate field effect transistor. The large peak-to-valley current ratio (PVCR) of 2.58 × 102 with a peak current value of − 0.8 μA is achieved with the presented device configuration. A 5-nm channel length device was considered for the study and an extended Hückel model with nonequilibrium Green’s function method is used for the simulation. A phosphorus atom is used as a substitutional dopant at the sulfur site of the MoS2 field effect transistor near the source and drain regions. The PVCR of the device can be controlled by applying a gate voltage. The achieved subthreshold slope of the device is 88 mV/decade with Ion/Ioff value of 1011 at 300 K. The other parameters such as peak current and NDR voltage window are analyzed. The proposed device configuration shows the potentiality of MoS2 armchair nanoribbon material for future small length scale electronic device applications.


Negative differential resistance (NDR) non-equilibrium Green’s function method (NEGF) peak to valley current ratio (PVCR) local density of state (LDOS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    R.H. Mathews, J.P. Sage, T.G. Sollner, S.D. Calawa, C.-L. Chen, L.J. Mahoney, P.A. Maki, and K.M. Molvari, in Proc. IEEE, vol. 87, p. 596 (1999).CrossRefGoogle Scholar
  2. 2.
    V. Nam Do and P. Dollfus, J. Appl. Phys. 107, 63705 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Singh, A. De Sarkar, B. Singh, and I. Kaur, RSC Adv. 7, 12783 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Singh, K. Garg, A. Sareen, R. Mehla, and I. Kaur, Org. Electron. 54, 261 (2018).CrossRefGoogle Scholar
  5. 5.
    P. Sharma, L.S. Bernard, A. Bazigos, A. Magrez, and A.M. Ionescu, ACS Nano 9, 620 (2014).CrossRefGoogle Scholar
  6. 6.
    Q. Liu, F. Ouyang, Z. Yang, S. Peng, W. Zhou, H. Zou, M. Long, and J. Pan, Nanotechnology 28, 075702 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Zhou, D. Zhang, J. Zhang, C. Ye, and X. Miao, J. Appl. Phys. 115, 073703 (2014).CrossRefGoogle Scholar
  8. 8.
    P. Zhao, D.-S. Liu, S.-J. Li, and G. Chen, Chem. Phys. Lett. 554, 172 (2012).CrossRefGoogle Scholar
  9. 9.
    S.-L. Yan, M.-Q. Long, X.-J. Zhang, and H. Xu, Phys. Lett. A 378, 960 (2014).CrossRefGoogle Scholar
  10. 10.
    N. Liu, J.B. Liu, G.Y. Gao, and K.L. Yao, Phys. Lett. A 378, 2217 (2014).CrossRefGoogle Scholar
  11. 11.
    C. Guo, T. Wang, C. Xia, and Y. Liu, Sci. Rep. 7, 12799 (2017).CrossRefGoogle Scholar
  12. 12.
    A. Sengupta and S. Mahapatra, J. Appl. Phys. 114, 19451 (2013).Google Scholar
  13. 13.
    N.T. Duonga, S. Banga, S.M. Leec, D.X. Danga, D.H. Keumb, J. Lee, M.S. Jeong, and S.C. Lim, Nanoscale 10, 12322 (2018).CrossRefGoogle Scholar
  14. 14.
    F. Liu, J. Wang, and H. Guo, Nanotechnology 26, 175201 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Alarcón, V.-H. Nguyen, S. Berrada, D. Querlioz, J. Saint-Martin, A. Bournel, and P. Dollfus, IEEE Trans. Electron Devices 60, 285 (2013).CrossRefGoogle Scholar
  16. 16.
    S. Smith, J.-P. Llinás, J. Bokor, and S. Salahuddin, IEEE Electron Device Lett. 39, 143 (2018).CrossRefGoogle Scholar
  17. 17.
    S. Krishnamoorthy, E.W. Lee, C.H. Lee, Y. Zhang, W.D. McCulloch, J.M. Johnson, J. Hwang, Y. Wu, and S. Rajan, Appl. Phys. Lett. 109, 183505 (2016).CrossRefGoogle Scholar
  18. 18.
    J. Kumar, H.B. Nemade, and P.K. Giri, Phys. Chem. Chem. Phys. 19, 29685 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Ghorbani-Asl, S. Kretschmer, D.E. Spearot, and A.V. Krasheninnikov, 2D Mater. 4, 025078 (2017).CrossRefGoogle Scholar
  20. 20.
    K. Dolui, I. Rungger, C.D. Pemmaraju, and S. Sanvito, Phys. Rev. B 88, 075420 (2013).CrossRefGoogle Scholar
  21. 21.
    M.R. Laskar, D.N. Nath, L. Ma, E.W. Lee, C.H. Lee, T. Kent, Z. Yang, R. Mishra, M.A. Roldan, J.-C. Idrobo, S.T. Pantelides, S.J. Pennycook, R.C. Myers, Y. Wu, and S. Rajan, Appl. Phys. Lett. 104, 092104 (2014).CrossRefGoogle Scholar
  22. 22.
    N. Kaushik, D. Karmakar, A. Nipane, S. Karande, and S. Lodha, ACS Appl. Mater. Interfaces. 8, 256 (2015).CrossRefGoogle Scholar
  23. 23.
    L. Cao, R. Wang, D. Wang, L. Xu, and X. Li, Chem. Phys. Lett. 612, 285 (2014).CrossRefGoogle Scholar
  24. 24.
    R.K. Ghosh and S. Mahapatra, IEEE Trans. Electron Devices 60, 274 (2013).CrossRefGoogle Scholar
  25. 25.
    Quantum Wise Simulator, Atomistix Tool Kit (ATK). Accessed 14 Feb 2019
  26. 26.
    J. Cerda and F. Soria, Phys. Rev. B 61, 7965 (1999).CrossRefGoogle Scholar
  27. 27.
    H. Zhang, W. Zhou, Q. Liu, Z. Yang, J. Pan, F. Ouyang, and H. Xu, Physica E 93, 143 (2017).CrossRefGoogle Scholar
  28. 28.
    X.-J. Song, L.-C. Xu, H.-F. Bai, Y. Li, Z. Ma, Z. Yang, R. Liu, and X. Li, J. Appl. Phys. 121, 144505 (2017).CrossRefGoogle Scholar
  29. 29.
    S. Datta, Superlattices Microstruct. 28, 253 (2000).CrossRefGoogle Scholar
  30. 30.
    J. Chang, L.F. Register, and S.K. Banerjee, Appl. Phys. Lett. 103, 223509 (2013).CrossRefGoogle Scholar
  31. 31.
    Z. Yang, J. Pan, Q. Liu, N. Wu, M. Hu, and F. Ouyang, Phys. Chem. Chem. Phys. 19, 1303 (2016).CrossRefGoogle Scholar
  32. 32.
    K. Dolui, I. Rungger, C.D. Pemmaraju, and S. Sanvito, Phys. Rev. B 88, 75420 (2014).CrossRefGoogle Scholar
  33. 33.
    G.J. Ferreira, M.N. Leuenberger, D. Loss, and J.C. Egues, Phys. Rev. B 84, 12553 (2011).Google Scholar
  34. 34.
    M. Hu, Z. Yang, W. Zhou, A. Li, J. Pan, and F. Ouyang, Physica E 98, 60 (2017).CrossRefGoogle Scholar
  35. 35.
    M. Oehme, O. Kirfel, J. Werner, M. Kaschel, E. Kasper, and J. Schulze, Thin Solid Films 518, 65 (2009).CrossRefGoogle Scholar
  36. 36.
    W.Y. Fung, L. Chen, and L. Wei, Appl. Phys. Lett. 99, 092108 (2011).CrossRefGoogle Scholar
  37. 37.
    A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, ACS Nano 10, 2128 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Micro and Nanoelectronics, School of Electronics EngineeringVellore Institute of TechnologyVelloreIndia

Personalised recommendations