Advertisement

Graphene Nanoscroll Geometry Effect on Transistor Performance

  • Mohammad Taghi AhmadiEmail author
  • Ramin Ahmadi
  • Truong Khang Nguyen
Article
  • 10 Downloads

Abstract

Graphene nanoscrolls (GNSs) with interesting geometry are ideal candidates for nanotechnology applications, particularly in nanoelectronics. Hence, in recent years, much attention has been paid to investigation of GNS applications owing to their remarkable properties. In this paper, a GNS-based Schottky transistors is analytically modeled. In the presented model the diverse arrangement of zigzag graphene nanoscrolls are assumed to form Schottky contacts. Based on the proposed design, the electronic parameters such as dispersion relation, density of states and effective mass by considering the effect of chirality number are investigated. As a main parameter, transmission probability is surveyed, and current–voltage characteristic under quantum tunneling effect is presented. Finally, the influences of barrier length, gate-source voltage and chirality number on I–V characteristics are explored. It is concluded that chirality number plays an important role compare to the other parameters.

Keywords

Graphene nanoscrolls Schottky transistor tunneling chirality number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Author’s contribution

The main idea has been suggested by Dr. M.T. Ahmadi which is been modelled by Ramin Ahmadi. In the final form, the results were discussed and supported by Dr. Truong Khang Nguyen.

Conflict of interest

The authors declare no competing interests.

References

  1. 1.
    M. Norouzi, R. Ahmadi, E. Norian, M.T. Ahmadi, and R. Ismail, J. Nanoelectron. Optoelectron. (2019).  https://doi.org/10.1166/jno.2019.2606.CrossRefGoogle Scholar
  2. 2.
    R. Ahmadi, M.T. Ahmadi, and R. Ismail, J. Electron. Mater. (2018).  https://doi.org/10.1007/s11664-018-6285-7.CrossRefGoogle Scholar
  3. 3.
    M.R. Mananghaya, G.N. Santos, and D. Yu, Org. Electron. (2018).  https://doi.org/10.1016/j.orgel.2018.09.031.CrossRefGoogle Scholar
  4. 4.
    M. Rahmani, H.G. Fard, M.T. Ahmadi, H. Habibiyan, S. Rahbarpour, and K. Rahmani, J. Comput. Electron. (2017).  https://doi.org/10.1007/s10825-017-1018-3.CrossRefGoogle Scholar
  5. 5.
    X. Shi, N.M. Pugno, and H. Gao, GutiLixueXuebao. (2010).  https://doi.org/10.1016/S0894-9166(11)60002-5.CrossRefGoogle Scholar
  6. 6.
    B. Jayasena, S. Subbiah, and C.D. Reddy, J. Micro Nano-Manuf. (2014).  https://doi.org/10.1115/1.4026325.CrossRefGoogle Scholar
  7. 7.
    A. Hamzah, M.T. Ahmadi, and R. Ismail, Curr. Nanosci. (2015).  https://doi.org/10.2174/1573413710999140918201702.CrossRefGoogle Scholar
  8. 8.
    R. Ismail, M.T. Ahmadi, and S. Anwar, Advanced Nanoelectronics (Boca Raton: CRC Press, 2016).CrossRefGoogle Scholar
  9. 9.
    M. Khaledian, R. Ismail, and E. Akbari, RSC Adv. (2016).  https://doi.org/10.1039/c5ra27789b.CrossRefGoogle Scholar
  10. 10.
    H. Liu, T. Le, L. Zhang, and M. Xu, J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-0074-1.CrossRefGoogle Scholar
  11. 11.
    M. Hassanzadazar, M.T. Ahmadi, R. Ismail, and H. Goudarzi, J. Electron. Mater. (2016).  https://doi.org/10.1007/s11664-016-4684-1.CrossRefGoogle Scholar
  12. 12.
    M.F. Craciun, S. Russo, M. Yamamoto, J.B. Oostinga, A.F. Morpurgo, and S. Tarucha, Nat. Nanotechnol. (2009).  https://doi.org/10.1038/nnano.2009.89.CrossRefGoogle Scholar
  13. 13.
    A. Javey, R. Tu, D.B. Farmer, J. Guo, R.G. Gordon, and H. Dai, Nano Lett. (2005).  https://doi.org/10.1021/nl047931j.CrossRefGoogle Scholar
  14. 14.
    Y. Chen, J. Lu, and Z. Gao, J. Phys. Chem. C (2007).  https://doi.org/10.1021/jp066030r.CrossRefGoogle Scholar
  15. 15.
    M. Rahmani, M.T. Ahmadi, H.K.F. Abadi, M. Saeidmanesh, E. Akbari, and R. Ismail, Nanoscale Res. Lett (2013).  https://doi.org/10.1186/1556-276X-8-55.CrossRefGoogle Scholar
  16. 16.
    H. Karimi, M.T. Ahmadi, E. Khosrowabadi, R. Rahmani, M. Saeidimanesh, R. Ismail, S.D. Naghib, and E. Akbari, RSC Adv (2014).  https://doi.org/10.1039/c3ra47432a.CrossRefGoogle Scholar
  17. 17.
    M.T. Ahmadi, Z. Johari, N.A. Amin, A.H. Fallahpour, and R. Ismail, J. Nanomater. (2010).  https://doi.org/10.1155/2010/753738.CrossRefGoogle Scholar
  18. 18.
    M. Khaledian, R. Ismail, M. Saeidmanesh, M.T. Ahmadi, and E. Akbari, J. Nanomater. (2014).  https://doi.org/10.1155/2014/762143.CrossRefGoogle Scholar
  19. 19.
    A.F.J. Levi, Applied Quantum Mechanics (Cambridge: Cambridge University Press, 2006).CrossRefGoogle Scholar
  20. 20.
    D.A. Neamen, Semiconductor Physics and Devices, 3rd ed. (New York: McGraw-Hill, 2003).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mohammad Taghi Ahmadi
    • 1
    • 2
    Email author
  • Ramin Ahmadi
    • 3
  • Truong Khang Nguyen
    • 1
    • 2
  1. 1.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Physics, Faculty of ScienceUrmia UniversityUrmiaIran

Personalised recommendations