Preparation of Rice Husk Biochar-Based Magnetic Nanocomposite for Effective Removal of Crystal Violet

  • Nguyen Thi Luyen
  • Ha Xuan Linh
  • Tran Quang HuyEmail author


Recently, magnetic biochars have attracted much attention and exhibited potential for dye removal from industrial wastewater. This work presents a cost-effective magnetic biochar (MBC) nanocomposite prepared from rice husk and iron oxide nanoparticles (IONPs), which was tested for removal of crystal violet (CV) from aqueous solution. Morphology and structure of rice husk biochar, IONPs, and MBC were characterized by transmission electron microscopy and x-ray diffraction, and the magnetic property was investigated with a vibrating sample magnetometer. The adsorption capacity of MBC was evaluated through CV removal with experimental parameters including pH solution, adsorbent dosage, and CV concentrations at room temperature. The adsorption kinetics of MBC for CV was also analysed using pseudo-first-order, and pseudo-second-order models. Results showed that rice husk biochar-based magnetic nanocomposite has been successfully prepared. The TEM image showed that many IONPs of 10–14 nm in diameter located inside the biochar network. Experimental results indicated that the adsorption efficiency of MBC rapidly reached 99.02% for CV removal within 15 min. The adsorption capacity of MBC for CV was found at 185.6 mg/g from aqueous solution with pH 6.0, contact time of 120 min at room temperature. This study illustrated the high adsorption capacity of rice husk-based MBC for CV compared to other MBCs and showed also that it is a potential cost-effective material for removal of other organic dyes from industrial wastewater.


Magnetic biochar rice husk iron oxide nanoparticle crystal violet dye removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Assoc. Prof Nguyen T. H. Hanh from the National Institute of Hygiene and Epidemiology, Hanoi for her great support, and also for valuable advice on our work. This research was partly supported by the bilateral project between Italy and Vietnam, coded NÐT.05.ITA/15.

Supplementary material

11664_2019_7798_MOESM1_ESM.pdf (75 kb)
Supplementary material 1 (PDF 74 kb)


  1. 1.
    J. Duraipandian, T. Rengasamy, and S. Vadivelu, J. Polym. Environ. 25, 1062 (2017).CrossRefGoogle Scholar
  2. 2.
    K. Mohanty, J.T. Naidu, B.C. Meikap, and M.N. Biswas, Ind. Eng. Chem. Res. 45, 5165 (2006).CrossRefGoogle Scholar
  3. 3.
    B. Liu, D. Wang, G. Yu, and X. Meng, J. Ocean Univ. China 12, 500 (2013).CrossRefGoogle Scholar
  4. 4.
    S. Mani and R.N. Bharagava, Rev. Environ. Contam. Toxicol. 237, 71 (2016).Google Scholar
  5. 5.
    K.P. Singh, S. Gupta, A.K. Singh, and S. Sinha, J. Hazard Mater. 186, 1462 (2011).CrossRefGoogle Scholar
  6. 6.
    S. Chakraborty, S. Chowdhury, and P.D. Saha, Carbohydr. Polym. 86, 1533 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Salama, J. Colloid Interface Sci. 487, 348 (2017).CrossRefGoogle Scholar
  8. 8.
    A. Mittal, D. Kaur, and J. Mittal, J. Colloid Interface Sci. 326, 8 (2008).CrossRefGoogle Scholar
  9. 9.
    P. Sun, C. Hui, R.A. Khan, J. Du, Q. Zhang, and Y.-H. Zhao, Sci. Rep. 5, 12638 (2015).CrossRefGoogle Scholar
  10. 10.
    N. Alizadeh, S. Shariati, and N. Besharati, Int. J. Environ. Res. 11, 197 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Li, G. Yu, L. Pan, C. Li, F. You, S. Xie, Y. Wang, J. Ma, and X. Shang, J. Environ. Sci. (China) 73, 20 (2018).CrossRefGoogle Scholar
  12. 12.
    L. Sun, D. Chen, S. Wan, and Z. Yu, J. Polym. Environ. 26, 765 (2018).CrossRefGoogle Scholar
  13. 13.
    C.D. Dong, C.W. Chen, and C.M. Hung, Environ. Sci. Pollut. Res. (2018).
  14. 14.
    E. Menya, P.W. Olupot, H. Storz, M. Lubwama, and Y. Kiros, Chem. Eng. Res. Des. 129, 271 (2018).CrossRefGoogle Scholar
  15. 15.
    L. Lin, S.R. Zhai, Z.Y. Xiao, Y. Song, Q. Da An, and X.W. Song, Bioresour. Technol. 136, 437 (2013).CrossRefGoogle Scholar
  16. 16.
    A. Mohammadi, A.L. Cowie, T.L.A. Mai, M. Brandão, R.A. de la Rosa, P. Kristiansen, and S. Joseph, J. Clean. Prod. 162, 260 (2017).CrossRefGoogle Scholar
  17. 17.
    Y.Y. Dong, S. Liu, Y.J. Liu, L.Y. Meng, and M.G. Ma, J. Mater. Sci. 52, 8219 (2017).CrossRefGoogle Scholar
  18. 18.
    B. Yu, B. Yang, G. Li, and H. Cong, J. Mater. Sci. 53, 6471 (2018).CrossRefGoogle Scholar
  19. 19.
    N. Yang, S. Zhu, D. Zhang, and S. Xu, Mater. Lett. 62, 645 (2008).CrossRefGoogle Scholar
  20. 20.
    T. Ahn, J.H. Kim, H.M. Yang, J.W. Lee, and J.D. Kim, J. Phys. Chem. C 116, 6069 (2012).CrossRefGoogle Scholar
  21. 21.
    H.K. Chung, W.H. Kim, J. Park, J. Cho, T.Y. Jeong, and P.K. Park, J. Ind. Eng. Chem. 28, 241 (2015).CrossRefGoogle Scholar
  22. 22.
    P.K. Gessner and M.M. Hasan, J. Pharm. Sci. 76, 319 (1987).CrossRefGoogle Scholar
  23. 23.
    V. Štengl, J. Bludska, F. OpluŠtil, and T. Němec, Mater. Res. Bull. 46, 2050 (2011).CrossRefGoogle Scholar
  24. 24.
    H. Gao, S. Lv, J. Dou, M. Kong, D. Dai, C. Si, and G. Liu, RSC Adv. 5, 60033 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, M. Zhang, X. Wang, Q. Huang, Y. Min, T. Ma, and J. Niu, Ind. Eng. Chem. Res. 53, 5498 (2014).CrossRefGoogle Scholar
  26. 26.
    Y.-S. Ho and G. McKay, Water Res. 34, 735 (2000).CrossRefGoogle Scholar
  27. 27.
    Z.-H. Ruan, J.-H. Wu, J.-F. Huang, Z.-T. Lin, Y.-F. Li, Y.-L. Liu, P.-Y. Cao, Y.-P. Fang, J. Xie, and G.-B. Jiang, J. Mater. Chem. A 3, 4595 (2015).CrossRefGoogle Scholar
  28. 28.
    T. Madrakian, A. Afkhami, and M. Ahmadi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 99, 102 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics and TechnologyThai Nguyen University of ScienceThai NguyenVietnam
  2. 2.International SchoolThai Nguyen UniversityThai NguyenVietnam
  3. 3.Phenikaa University Nano Institute (PHENA)Phenikaa UniversityHanoiVietnam
  4. 4.Faculty of Electrical and Electronic EngineeringPhenikaa UniversityHanoiVietnam

Personalised recommendations