Effect of Growth Temperature on Physical Properties of MoS2 Thin Films Synthesized by CVD

  • Mahnoosh Ardahe
  • Mohammad Reza HantehzadehEmail author
  • Mahmood Ghoranneviss


Due to the application of two-dimensional crystals in different fields, high-quality growth of these materials has attracted more attention from researchers. High-quality monolayer MoS2 with single crystals up to 20 microns in size has been formed on Si substrate by the chemical vapor deposition method. A comprehensive study was carried out on the prepared MoS2 thin films using optical microscopy, atomic force microscopy, x-ray diffraction (XRD) analysis, and Raman spectroscopy. It was concluded that the growth temperature affected the morphology and structure of the synthesized MoS2 sheets. The XRD spectra confirmed that the peak intensity and resolution were highly dependent on the growth temperature. Raman spectroscopy showed that monolayer MoS2 was grown on the silicon substrate at higher temperature, as proved by the Raman frequency difference (∼ 19 cm−1) between two characteristic modes (\( {\hbox{E}}^{1}_{{2{\rm{g}}}} \) and A1g). Atomic force micrographs of the films showed the evolution of the surface morphology as a function of the growth temperature.


Molybdenum disulfide two-dimensional materials chemical vapor deposition Raman spectra monolayer atomic force microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research work was supported by the Department of Physics Science and Research Branch, Islamic Azad University, Tehran, Iran.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    A. Shekaari and M.R. Abolhassani, Chin. J. Phys. 55, 105 (2017).CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov and A.C. Neto, Phys. Scr. 146, 014006 (2012).CrossRefGoogle Scholar
  4. 4.
    W.J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Nat. Mater. 12, 246 (2013).CrossRefGoogle Scholar
  5. 5.
    C. Dean, A.F. Young, L. Wang, I. Meric, G.H. Lee, K. Watanabe, T. Taniguchi, K. Shepard, P. Kim, and J. Hone, Solid State Commun. 152, 1275 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Palacios, Nat. Nanotechnol. 6, 464 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Osada and T. Sasaki, Adv. Mater. 24, 209 (2012).CrossRefGoogle Scholar
  8. 8.
    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
  9. 9.
    B. Radisavljevic, A. Radenovic, J. Brivio, I.V. Giacometti, and A. Kis, Nat. Nanotechnol 6, 147 (2011).CrossRefGoogle Scholar
  10. 10.
    C.P. Lu, G. Li, J. Mao, L.M. Wang, and E.Y. Andrei, Nano Lett. 14, 4628 (2014).CrossRefGoogle Scholar
  11. 11.
    Q. Luan, C.L. Yang, M.S. Wang, and X.G. Ma, Chin. J. Phys. 55, 1930 (2017).CrossRefGoogle Scholar
  12. 12.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).CrossRefGoogle Scholar
  14. 14.
    B. Radisavljevic, M.B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).CrossRefGoogle Scholar
  15. 15.
    M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
  16. 16.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).CrossRefGoogle Scholar
  17. 17.
    H.L. Zhuang and R.G. Hennig, J. Phys. Chem. C 117, 20440 (2013).CrossRefGoogle Scholar
  18. 18.
    K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y. Shi, H. Zhang, and C.S. Lai, Nano Lett. 12, 1538 (2012).CrossRefGoogle Scholar
  19. 19.
    Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, and H. Zhang, Small 8, 2994 (2012).CrossRefGoogle Scholar
  20. 20.
    Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11, 3768 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Wang, L. Yu, Y.H. Lee, W. Fang, A. Hsu, P. Herring, M. Chin, M. Dubey, L.J. Li, J. Kong, T. Palacios (2013) American Physical Society, p. 461.
  22. 22.
    A. Ramasubramaniam, D. Naveh, and E. Towe, Phys. Rev. B 84, 205325 (2011).CrossRefGoogle Scholar
  23. 23.
    M.Y. Lei, C.M. Liu, Y.G. Zhou, Z.H. Yan, S.B. Han, W. Liu, X. Xiang, and X.T. Zu, Chin. J. Phys. 54, 51 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, and J. Lou, Nat. Mater. 12, 754 (2013).CrossRefGoogle Scholar
  25. 25.
    Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, and T.W. Lin, Adv. Mater. 24, 2320 (2012).CrossRefGoogle Scholar
  26. 26.
    Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, and J. Lou, Small 8, 966 (2012).CrossRefGoogle Scholar
  27. 27.
    M.R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D.N. Nath, W. Lu, Y. Wu, and S. Rajan, Appl. Phys. Lett. 102, 252108 (2013).CrossRefGoogle Scholar
  28. 28.
    Y. Wang, X. Luo, N. Zhang, M.R. Laskar, L. Ma, Y. Wu, S. Rajan, W. Lu, in Microwave Measurement Conference, 2013 82nd ARFTG IEEE, pp. 1–3.Google Scholar
  29. 29.
    S. Ganorkar, J. Kim, and Y.H. Kim, J. Phys. Chem. Solids 87, 32 (2015).CrossRefGoogle Scholar
  30. 30.
    Y. Cao, X. Luo, S. Han, C. Yuan, Y. Yang, Q. Li, T. Yu, and S. Ye, Chem. Phys. Lett. 631, 30 (2015).CrossRefGoogle Scholar
  31. 31.
    G. Tang, J. Sun, C. Wei, K. Wu, X. Ji, S. Liu, H. Tang, and C. Li, Mater. Lett. 86, 9 (2012).CrossRefGoogle Scholar
  32. 32.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).CrossRefGoogle Scholar
  33. 33.
    X.L. Li and Y.D. Li, Chem. -A Eur. J. 9, 2726 (2003).CrossRefGoogle Scholar
  34. 34.
    Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, and T.W. Lin, Adv. Mater. 24, 2320 (2012).CrossRefGoogle Scholar
  35. 35.
    R. Shahzad, T. Kim, and S.W. Kang, Thin Solid Films 641, 79 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mahnoosh Ardahe
    • 1
  • Mohammad Reza Hantehzadeh
    • 1
    Email author
  • Mahmood Ghoranneviss
    • 1
  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations