Analysis of Kinetic and Nucleation Mechanisms of Electrodeposited Copper on Indium Tin Oxide Thin Films

  • K. Nehaoua
  • A. Zouaoui
  • B. Khaniche
  • F. Z. Satour
  • A. ZegadiEmail author


In this paper, we report an electrochemical study using cyclic voltammetry and chronoamperometry on the kinetic and nucleation mechanisms of electrodeposited copper on indium-doped tin oxide-coated glass substrates from sulfate solutions. The present investigation has been carried out in an acid solution at pH = 5. The Scharifker–Hills model was used to analyze current transients. At relatively low overpotentials, copper deposition is observed to follow a model that involves instantaneous nucleation and diffusion-controlled 3D growth. The diffusion coefficient for Cu2+ for various applied potentials is determined. Atomic force microscopy (AFM) has been used to check the surface morphology of the electrodeposited thin films.


Indium tin oxide copper thin films electrodeposition nucleation AFM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    D. Landolt, J. Electrochem. Soc. 149, S9 (2002).CrossRefGoogle Scholar
  2. 2.
    D. Grujicic and B. Pesic, Electrochim. Acta 50, 4426 (2005).CrossRefGoogle Scholar
  3. 3.
    A.L. Portela, M. Lopez Teijelo, and G.I. Lacconi, Electrochim. Acta 51, 3261 (2006).CrossRefGoogle Scholar
  4. 4.
    A.I. Danilov, E.B. Molodokina, A.A. Baitov, I.V. Pobelov, and YuM Polukarov, Russ. J. Electrochem. 38, 743 (2002).CrossRefGoogle Scholar
  5. 5.
    G. Oskam, P.M. Vereecken, and P.C. Searson, J. Electrochem. Soc. 146, 1436 (1999).CrossRefGoogle Scholar
  6. 6.
    A. Radisic, J.G. Long, P.M. Hoffmann, and P.C. Searson, J. Electrochem. Soc. 148, C41 (2001).CrossRefGoogle Scholar
  7. 7.
    D. Grujicic and B. Pesic, Electrochim. Acta 47, 2901 (2002).CrossRefGoogle Scholar
  8. 8.
    J. Sasano, R. Murota, Y. Yamauchi, T. Sakka, and Y.H. Ogata, J. Electroanal. Chem. 559, 125 (2003).CrossRefGoogle Scholar
  9. 9.
    S. Li, M. Tian, Q. Gao, M. Wang, T. Li, Q. Hu, X. Li, and Y. Wu, Nature Mater. 18, 1091 (2019).CrossRefGoogle Scholar
  10. 10.
    A. Zouaoui, O. Stéphan, M. Carrier, and J.-C. Moutet, J. Electroanal. Chem. 474, 113 (1999).CrossRefGoogle Scholar
  11. 11.
    B. Khaniche, H. Benamrani, A. Zouaoui, and A. Zegadi, Mater. Sci. Semicond. Proc. 27, 689 (2014).CrossRefGoogle Scholar
  12. 12.
    N. Hakimi, A. Zouaoui, F.Z. Satour, A. Sahari, and A. Zegadi, J. Inorg. Organomet. Polym. (2019). Scholar
  13. 13.
    R. Sonnenfeld, J. Schneier, P.K. Hansma, R.E. White, and J.O’.M. Bockris, Modern Aspects of Electrochemistry, Vol. 21, ed. B.E. Conway (New York: Plenium, 1990), Google Scholar
  14. 14.
    L. Huang, F.-Z. Yang, S.-K. Xu, and S.-M. Zhou, Trans. Inst. Met. Finish. 84, 47 (2006).CrossRefGoogle Scholar
  15. 15.
    M.R. Khelladi, L. Mentar, A. Azizi, A. Sahari, and A. Kahoul, Mater. Chem. Phys. 115, 385 (2009).CrossRefGoogle Scholar
  16. 16.
    M.B.Q. Argafiaraz, C.I. Vazquez, and G.I. Lacconi, J. Electroanal. Chem. 639, 95 (2010).CrossRefGoogle Scholar
  17. 17.
    A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (New York: Wiley, 1980).Google Scholar
  18. 18.
    A.A. Pasa and W. Schwarzacher, Phys. Status Solidi A 173, 73 (1999).CrossRefGoogle Scholar
  19. 19.
    B. Scharifker and G. Hills, Electrochim. Acta 28, 879 (1983).CrossRefGoogle Scholar
  20. 20.
    R. Bertazolli and D. Pletcher, Electrochim. Acta 38, 671 (1993).CrossRefGoogle Scholar
  21. 21.
    A.N. Correira, S.A.S. Machado, and L.A. Avaca, J. Electroanal. Chem. 488, 110 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • K. Nehaoua
    • 1
  • A. Zouaoui
    • 1
  • B. Khaniche
    • 1
  • F. Z. Satour
    • 1
  • A. Zegadi
    • 1
    Email author
  1. 1.Laboratoire: Croissance et Caractérisation de Nouveaux Semiconducteurs (LCCNS), Faculté de TechnologieUniversité Ferhat Abbas Sétif 1SétifAlgeria

Personalised recommendations