Advertisement

Enhanced Charge Transport and Corrosion Protection Properties of Polyaniline–Carbon Nanotube Composite Coatings on Mild Steel

  • T. Rajyalakshmi
  • Apsar PashaEmail author
  • Syed Khasim
  • Mohana Lakshmi
  • M. V. Murugendrappa
  • Nacer Badi
Article
  • 8 Downloads

Abstract

We report on the synthesis and characterization of carbon nanotube (CNT)-doped polyaniline (PANI) composites for enhanced corrosion protection of steel with improved electrical properties. PANI–CNT nanocomposites were prepared through in situ polymerization of aniline in the presence of CNTs. Synthesized nanocomposites were characterized by several analytical methods such as Fourier transform infrared spectroscopy, x-ray diffraction, micro-Raman spectroscopy, and scanning electron microscopy in order to understand the structural, morphological, and molecular aspects of the composites. The doping of CNTs in PANI matrix drastically enhanced the alternating current/direct current (AC/DC) conductivities as well as the dielectric attributes and impedance spectroscopy of the composites. The anticorrosion studies of the prepared composites were performed by using open-circuit potential analysis and potentiodynamic measurements. Compared to stainless steel, PANI–CNT nanocomposites demonstrated excellent anticorrosion behavior. The obtained results showed that 25 wt.% of CNT-doped PANI composite exhibits excellent anticorrosion properties due to electron transmission and passive catalysis.

Keywords

Polyaniline carbon nanotubes PANI–CNTs anticorrosion nanocomposites electrical conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the management and Principal of PES University, Bangalore South Campus, for their cooperation and assistance to carry out this research work.

References

  1. 1.
    A.S. Curran and M.P. Ajayan, Adv. Mater. 10, 1091 (1998).CrossRefGoogle Scholar
  2. 2.
    M. Cochet and W.K. Master, Chem. Commun. 10, 1450 (2001).CrossRefGoogle Scholar
  3. 3.
    H. Zengin and W. Zhou, J. Adv. Mater. 14, 1480 (2002).CrossRefGoogle Scholar
  4. 4.
    P.M. Ajayan and O. Stephen, J. Sci. 265, 1212 (1994).Google Scholar
  5. 5.
    P.M. Ajayan, Chem. Rev. 99, 1787 (1999).CrossRefGoogle Scholar
  6. 6.
    H.R. Baughaman and A.A. Zakhidov, J. Sci. 297, 787 (2002).Google Scholar
  7. 7.
    T.E. Thostenson and Z. Ren, Sci. Technol. 61, 1899 (2001).Google Scholar
  8. 8.
    M. Moniruzzaman and K.I. Winey, Macromolecules 39, 5194 (2006).CrossRefGoogle Scholar
  9. 9.
    E. Kymakis, Appl. Phys. Lett. 80, 112 (2002).CrossRefGoogle Scholar
  10. 10.
    J. Michael and O. Connell, Chem. Phys. Lett. 342, 265 (2001).CrossRefGoogle Scholar
  11. 11.
    G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, and W.R. Lee, J. Ind. Eng. Chem. 21, 11 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Palaniappan and A. John, Prog. Polym. Sci. 33, 732 (2008).CrossRefGoogle Scholar
  13. 13.
    W.K. Jang, J. Yun, H.I. Kim, and Y.S. Lee, J. Carbon Lett. 12, 162 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Yun, H.I. Kim, and Y.S. Lee, Appl. Surf. Sci. 258, 3462 (2012).CrossRefGoogle Scholar
  15. 15.
    T.H. Le, N.T. Trinh, L.H. Nguyen, H.B. Nguyen, V.A. Nguyen, and T.D. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025014 (2013).CrossRefGoogle Scholar
  16. 16.
    M.S. Dorraji, I. Ahadzadeh, M.H. Rasoulifard, and M. Chitosan, Int. J. Hydrog. Energy 39, 9350 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Zhang, B. He, Q. Tang, and L. Yu, J. Power Sources 275, 489 (2015).CrossRefGoogle Scholar
  18. 18.
    H.F. Cui, L. Du, P.B. Guo, and B. Zhu, J. Power Sources 283, 46 (2015).CrossRefGoogle Scholar
  19. 19.
    A.M. Kumar and Z.M. Gasem, Prog. Org. Coat. 78, 387 (2015).CrossRefGoogle Scholar
  20. 20.
    R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, Phys. Chem. Chem. Phys. 19, 23268 (2017).CrossRefGoogle Scholar
  21. 21.
    M. Wu, Y.W. Lin, and C.S. Liao, Carbon 43, 734 (2005).CrossRefGoogle Scholar
  22. 22.
    J.A. Syed, H. Lu, S. Tang, and X. Meng, Appl. Surf. Sci. 325, 160 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. Chen, X.H. Wang, J. Li, J.L. Lu, and F.S. Wang, Corros. Sci. 49, 3052 (2007).CrossRefGoogle Scholar
  24. 24.
    D.P. Le, Y.H. Yoo, J.G. Kim, S.M. Cho, and Y.K. Son, Corros. Sci. 51, 330 (2009).CrossRefGoogle Scholar
  25. 25.
    C.-H. Chang and T.-C. Yeh, Carbon 50, 044 (2012).Google Scholar
  26. 26.
    Z.H. Zhang, D.Q. Zhang, L.H. Zhu, L.X. Gao, T. Lin, and W.G. Li, J. Coat. Technol. Res. 14, 1083 (2017).CrossRefGoogle Scholar
  27. 27.
    M. Lakshmi, A.S. Roy, and S. Khasim, AIP Adv. 3, 112 (2013).CrossRefGoogle Scholar
  28. 28.
    G. Theivandran, M. Ibrahim, and S. Murugan, J. Med. Plants Stud. 3, 30 (2015).Google Scholar
  29. 29.
    A.C. Ferrari and J. Robertson, J. RSC 362, 1824 (2004).Google Scholar
  30. 30.
    A. Eckmann, A. Felten, I. Verzhbitskiy, R. Davey, and C. Casiraghi, Phys. Rev. B 88, 035426 (2013).CrossRefGoogle Scholar
  31. 31.
    F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (2003).CrossRefGoogle Scholar
  32. 32.
    T.M. Wu and Y.W. Lin, Polymer 47, 3576 (2006).CrossRefGoogle Scholar
  33. 33.
    S. Khasim, Results Phys. 12, 1073 (2019).CrossRefGoogle Scholar
  34. 34.
    S. Khasim and M. Lakshmi, Polym. Compos. 10, 24895 (2018).Google Scholar
  35. 35.
    R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).CrossRefGoogle Scholar
  36. 36.
    R. Kumar, R. Rajendiran, H.K. Choudhary, G.M. Naveen Kumar, B. Balaiah, A.V. Anupama, and B. Sahoo, Nano-Struct. Nano-Objects 12, 229 (2017).CrossRefGoogle Scholar
  37. 37.
    P. Kar and A. Choudhury, Sens. Actuators B Chem. 183, 25 (2013).CrossRefGoogle Scholar
  38. 38.
    J.C. Dyre Schroder, Rev. Mod. Phys. 72, 873 (2000).CrossRefGoogle Scholar
  39. 39.
    S. Khasim and O.A. Al-Hartomy, RSC Adv. 4, 39844 (2018).CrossRefGoogle Scholar
  40. 40.
    A. Mishra and S.N. Choudhary, Phys. B 406, 3279 (2011).CrossRefGoogle Scholar
  41. 41.
    Z.D. Xiang, T. Chen, and X.C. Bian, Macromol. Mater. Eng. 294, 91 (2009).CrossRefGoogle Scholar
  42. 42.
    K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. B 280, 388 (2000).CrossRefGoogle Scholar
  43. 43.
    A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. Part B Polym. Phys. 33, 1737 (1995).CrossRefGoogle Scholar
  44. 44.
    A.O. Al-Hartomy, S. Khasim, A. Roy, and A. Pasha, Appl. Phys. A 125, 12 (2019).CrossRefGoogle Scholar
  45. 45.
    L.N. Shubha and P. Madhusudhan Rao, Int. J. Sci. Eng. Res. 6, 11 (2015).Google Scholar
  46. 46.
    W.S. Tait, Docs Publications (1994), p. 57.Google Scholar
  47. 47.
    C.K. Tan and D.J. Blackwood, Corros. Sci. 45, 545 (2003).CrossRefGoogle Scholar
  48. 48.
    P. Ocon, A.B. Cristol, P. Herrasti, and E. Fatas, Corros. Sci. 47, 649 (2005).CrossRefGoogle Scholar
  49. 49.
    S. Sathiyanarayanan, S. Muthukrishnan, and G. Venkatachari, Prog. Org. Coat. 64, 460 (2009).CrossRefGoogle Scholar
  50. 50.
    K.F. Khaled, Electrochim. Acta 48, 2493 (2003).CrossRefGoogle Scholar
  51. 51.
    D.W. De Berry, J. Electrochem. Soc. 132, 1022 (1985).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • T. Rajyalakshmi
    • 1
  • Apsar Pasha
    • 2
    Email author
  • Syed Khasim
    • 3
    • 4
  • Mohana Lakshmi
    • 4
  • M. V. Murugendrappa
    • 5
  • Nacer Badi
    • 3
    • 6
  1. 1.Department of PhysicsPES UniversityBengaluruIndia
  2. 2.Department of PhysicsGhousia College of EngineeringRamanagaramIndia
  3. 3.Renewable Energy Laboratory, Nanotechnology Research Unit, Faculty of ScienceUniversity of TabukTabukKingdom of Saudi Arabia
  4. 4.Department of PhysicsPES UniversityBengaluruIndia
  5. 5.Center of Excellence in Advanced Materials ResearchBMS College of EngineeringBengaluruIndia
  6. 6.Center for Advanced MaterialsUniversity of HoustonHoustonUSA

Personalised recommendations