Enhanced Charge Transport and Corrosion Protection Properties of Polyaniline–Carbon Nanotube Composite Coatings on Mild Steel
- 8 Downloads
Abstract
We report on the synthesis and characterization of carbon nanotube (CNT)-doped polyaniline (PANI) composites for enhanced corrosion protection of steel with improved electrical properties. PANI–CNT nanocomposites were prepared through in situ polymerization of aniline in the presence of CNTs. Synthesized nanocomposites were characterized by several analytical methods such as Fourier transform infrared spectroscopy, x-ray diffraction, micro-Raman spectroscopy, and scanning electron microscopy in order to understand the structural, morphological, and molecular aspects of the composites. The doping of CNTs in PANI matrix drastically enhanced the alternating current/direct current (AC/DC) conductivities as well as the dielectric attributes and impedance spectroscopy of the composites. The anticorrosion studies of the prepared composites were performed by using open-circuit potential analysis and potentiodynamic measurements. Compared to stainless steel, PANI–CNT nanocomposites demonstrated excellent anticorrosion behavior. The obtained results showed that 25 wt.% of CNT-doped PANI composite exhibits excellent anticorrosion properties due to electron transmission and passive catalysis.
Keywords
Polyaniline carbon nanotubes PANI–CNTs anticorrosion nanocomposites electrical conductivityPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
The authors would like to thank the management and Principal of PES University, Bangalore South Campus, for their cooperation and assistance to carry out this research work.
References
- 1.A.S. Curran and M.P. Ajayan, Adv. Mater. 10, 1091 (1998).CrossRefGoogle Scholar
- 2.M. Cochet and W.K. Master, Chem. Commun. 10, 1450 (2001).CrossRefGoogle Scholar
- 3.H. Zengin and W. Zhou, J. Adv. Mater. 14, 1480 (2002).CrossRefGoogle Scholar
- 4.P.M. Ajayan and O. Stephen, J. Sci. 265, 1212 (1994).Google Scholar
- 5.P.M. Ajayan, Chem. Rev. 99, 1787 (1999).CrossRefGoogle Scholar
- 6.H.R. Baughaman and A.A. Zakhidov, J. Sci. 297, 787 (2002).Google Scholar
- 7.T.E. Thostenson and Z. Ren, Sci. Technol. 61, 1899 (2001).Google Scholar
- 8.M. Moniruzzaman and K.I. Winey, Macromolecules 39, 5194 (2006).CrossRefGoogle Scholar
- 9.E. Kymakis, Appl. Phys. Lett. 80, 112 (2002).CrossRefGoogle Scholar
- 10.J. Michael and O. Connell, Chem. Phys. Lett. 342, 265 (2001).CrossRefGoogle Scholar
- 11.G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, and W.R. Lee, J. Ind. Eng. Chem. 21, 11 (2015).CrossRefGoogle Scholar
- 12.S. Palaniappan and A. John, Prog. Polym. Sci. 33, 732 (2008).CrossRefGoogle Scholar
- 13.W.K. Jang, J. Yun, H.I. Kim, and Y.S. Lee, J. Carbon Lett. 12, 162 (2011).CrossRefGoogle Scholar
- 14.J. Yun, H.I. Kim, and Y.S. Lee, Appl. Surf. Sci. 258, 3462 (2012).CrossRefGoogle Scholar
- 15.T.H. Le, N.T. Trinh, L.H. Nguyen, H.B. Nguyen, V.A. Nguyen, and T.D. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025014 (2013).CrossRefGoogle Scholar
- 16.M.S. Dorraji, I. Ahadzadeh, M.H. Rasoulifard, and M. Chitosan, Int. J. Hydrog. Energy 39, 9350 (2014).CrossRefGoogle Scholar
- 17.H. Zhang, B. He, Q. Tang, and L. Yu, J. Power Sources 275, 489 (2015).CrossRefGoogle Scholar
- 18.H.F. Cui, L. Du, P.B. Guo, and B. Zhu, J. Power Sources 283, 46 (2015).CrossRefGoogle Scholar
- 19.A.M. Kumar and Z.M. Gasem, Prog. Org. Coat. 78, 387 (2015).CrossRefGoogle Scholar
- 20.R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, Phys. Chem. Chem. Phys. 19, 23268 (2017).CrossRefGoogle Scholar
- 21.M. Wu, Y.W. Lin, and C.S. Liao, Carbon 43, 734 (2005).CrossRefGoogle Scholar
- 22.J.A. Syed, H. Lu, S. Tang, and X. Meng, Appl. Surf. Sci. 325, 160 (2015).CrossRefGoogle Scholar
- 23.Y. Chen, X.H. Wang, J. Li, J.L. Lu, and F.S. Wang, Corros. Sci. 49, 3052 (2007).CrossRefGoogle Scholar
- 24.D.P. Le, Y.H. Yoo, J.G. Kim, S.M. Cho, and Y.K. Son, Corros. Sci. 51, 330 (2009).CrossRefGoogle Scholar
- 25.C.-H. Chang and T.-C. Yeh, Carbon 50, 044 (2012).Google Scholar
- 26.Z.H. Zhang, D.Q. Zhang, L.H. Zhu, L.X. Gao, T. Lin, and W.G. Li, J. Coat. Technol. Res. 14, 1083 (2017).CrossRefGoogle Scholar
- 27.M. Lakshmi, A.S. Roy, and S. Khasim, AIP Adv. 3, 112 (2013).CrossRefGoogle Scholar
- 28.G. Theivandran, M. Ibrahim, and S. Murugan, J. Med. Plants Stud. 3, 30 (2015).Google Scholar
- 29.A.C. Ferrari and J. Robertson, J. RSC 362, 1824 (2004).Google Scholar
- 30.A. Eckmann, A. Felten, I. Verzhbitskiy, R. Davey, and C. Casiraghi, Phys. Rev. B 88, 035426 (2013).CrossRefGoogle Scholar
- 31.F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (2003).CrossRefGoogle Scholar
- 32.T.M. Wu and Y.W. Lin, Polymer 47, 3576 (2006).CrossRefGoogle Scholar
- 33.S. Khasim, Results Phys. 12, 1073 (2019).CrossRefGoogle Scholar
- 34.S. Khasim and M. Lakshmi, Polym. Compos. 10, 24895 (2018).Google Scholar
- 35.R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).CrossRefGoogle Scholar
- 36.R. Kumar, R. Rajendiran, H.K. Choudhary, G.M. Naveen Kumar, B. Balaiah, A.V. Anupama, and B. Sahoo, Nano-Struct. Nano-Objects 12, 229 (2017).CrossRefGoogle Scholar
- 37.P. Kar and A. Choudhury, Sens. Actuators B Chem. 183, 25 (2013).CrossRefGoogle Scholar
- 38.J.C. Dyre Schroder, Rev. Mod. Phys. 72, 873 (2000).CrossRefGoogle Scholar
- 39.S. Khasim and O.A. Al-Hartomy, RSC Adv. 4, 39844 (2018).CrossRefGoogle Scholar
- 40.A. Mishra and S.N. Choudhary, Phys. B 406, 3279 (2011).CrossRefGoogle Scholar
- 41.Z.D. Xiang, T. Chen, and X.C. Bian, Macromol. Mater. Eng. 294, 91 (2009).CrossRefGoogle Scholar
- 42.K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. B 280, 388 (2000).CrossRefGoogle Scholar
- 43.A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. Part B Polym. Phys. 33, 1737 (1995).CrossRefGoogle Scholar
- 44.A.O. Al-Hartomy, S. Khasim, A. Roy, and A. Pasha, Appl. Phys. A 125, 12 (2019).CrossRefGoogle Scholar
- 45.L.N. Shubha and P. Madhusudhan Rao, Int. J. Sci. Eng. Res. 6, 11 (2015).Google Scholar
- 46.W.S. Tait, Docs Publications (1994), p. 57.Google Scholar
- 47.C.K. Tan and D.J. Blackwood, Corros. Sci. 45, 545 (2003).CrossRefGoogle Scholar
- 48.P. Ocon, A.B. Cristol, P. Herrasti, and E. Fatas, Corros. Sci. 47, 649 (2005).CrossRefGoogle Scholar
- 49.S. Sathiyanarayanan, S. Muthukrishnan, and G. Venkatachari, Prog. Org. Coat. 64, 460 (2009).CrossRefGoogle Scholar
- 50.K.F. Khaled, Electrochim. Acta 48, 2493 (2003).CrossRefGoogle Scholar
- 51.D.W. De Berry, J. Electrochem. Soc. 132, 1022 (1985).CrossRefGoogle Scholar