Advertisement

Influence of Vacancy on the Mechanical, Electronic and Thermodynamic Properties of Mo5SiB2 from First-Principles Calculations

  • Yong PanEmail author
  • Delin Pu
Article
  • 3 Downloads

Abstract

Although Mo5SiB2 is a promising high-temperature material, the role of point defects on the structural stability, mechanical and thermodynamic properties of Mo5SiB2 is unclear. In this study, the first-principles calculations to study the influence of vacancies on the mechanical, electronic and thermodynamic properties of Mo5SiB2 were applied. Three vacancies: B-va, Si-va and Mo-va are considered. The results show that those vacancies are thermodynamically stable in Mo5SiB2. In particular, Mo-va is more thermodynamically stable than that of the B-va and Si-va. The calculated bulk modulus, shear modulus and Young’s modulus of the Mo5SiB2 are 271 GPa, 152 GPa and 384 GPa, respectively. Although those vacancies weaken the elastic deformation resistance of Mo5SiB2, they improve its deformation resistance along the c-axis. Importantly, the Mo-va1 improves the thermodynamic properties of Mo5SiB2 in comparison to the other vacancies. Finally, those vacancies result in a band shift from the conduction band to the valence band.

Keywords

Ternary silicides vacancy mechanical properties electronic properties thermodynamic properties first-principle calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the Sichuan Provincial College’s Sate Key Laboratory of Oil and Gas Reservoir Project (X151518KCL26), the National Natural Science Foundation of China (grant no. 51274170) and the State Key Laboratory of Advanced Technology for Comprehensive Utilization of Platinum Metals (grant no. SKL-SPM-201816). We acknowledge the helpful assistance from Lady Yun Zheng and Runxi Pan.

References

  1. 1.
    Y. Pan and W.M. Guan, Phys. Chem. Chem. Phys. 19, 19427 (2017).CrossRefGoogle Scholar
  2. 2.
    J. He, X. Guo, and Y. Qiao, Corros. Sci. 147, 152 (2019).CrossRefGoogle Scholar
  3. 3.
    Y. Pan, Y. Lin, Q. Xue, C. Ren, and H. Wang, Mater. Des. 89, 676 (2016).CrossRefGoogle Scholar
  4. 4.
    E. Erturk and T. Gurel, Phys. B 537, 188 (2018).CrossRefGoogle Scholar
  5. 5.
    Y. Pan, J. Alloys Compd. 779, 813 (2019).CrossRefGoogle Scholar
  6. 6.
    H. Chen, X. Shao, C.Z. Wang, X.P. Pu, X.C. Zhao, B.X. Huang, and J. Ma, Intermetallics 85, 15 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Pan and C. Jing, Ceram. Int. 45, 21373 (2019).CrossRefGoogle Scholar
  8. 8.
    S. Wang and Y. Pan, J. Am. Ceram. Soc. 102, 4822 (2019).CrossRefGoogle Scholar
  9. 9.
    Y. Pan and W.M. Guan, Ceram. Int. 45, 15649 (2019).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, Y. Li, and C. Bai, Ceram. Int. 43, 6250 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Pan, P. Wang, and C.M. Zhang, Ceram. Int. 44, 12357 (2018).CrossRefGoogle Scholar
  12. 12.
    D. Chen, F. Luo, W. Zhou, and D. Zhu, J. Electron. Mater. 48, 1506 (2019).CrossRefGoogle Scholar
  13. 13.
    Y. Pan and M. Wen, Thin Solid Films 664, 46 (2018).CrossRefGoogle Scholar
  14. 14.
    Y. Pan, Y. Li, and Q. Zheng, J. Alloys Compd. 789, 860 (2019).CrossRefGoogle Scholar
  15. 15.
    Y. Yan, H. Ding, Y. Kang, and J. Song, Mater. Des. 55, 450 (2014).CrossRefGoogle Scholar
  16. 16.
    W. Xu, J. Han, C. Wang, Y. Zhou, Y. Wang, Y. Kang, B. Wen, X. Liu, and Z. Liu, Intermetallics 46, 72 (2014).CrossRefGoogle Scholar
  17. 17.
    Y. Pan and S. Wang, Ceram. Int. 44, 19583 (2018).CrossRefGoogle Scholar
  18. 18.
    D. Sarwono and K.L. Lin, J. Electron. Mater. 48, 99 (2019).CrossRefGoogle Scholar
  19. 19.
    Y. Pan and B. Zhou, Ceram. Int. 43, 8763 (2017).CrossRefGoogle Scholar
  20. 20.
    X. Ling, J. Alloys Compd. 740, 1032 (2018).CrossRefGoogle Scholar
  21. 21.
    Y. Pan, P. Mao, H. Jiang, Y. Wan, and W. Guan, Ceram. Int. 43, 5274 (2017).CrossRefGoogle Scholar
  22. 22.
    I. Papadimitriou, C. Utton, and P. Tsakiropoulos, Sci. Technol. Adv. Mater. 18, 467 (2017).CrossRefGoogle Scholar
  23. 23.
    Y. Pan and M. Wen, Int. J. Hydrog. Energy 43, 22055 (2018).CrossRefGoogle Scholar
  24. 24.
    J. Cheng, S. Yi, and J.S. Park, J. Alloys Compd. 644, 975 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Pan and C.-S. Shi, JOM 70, 2463 (2018).CrossRefGoogle Scholar
  26. 26.
    F. Wang, L. Luo, X. Meng, Y. Xu, L. Wang, Y. Su, J. Guo, and H. Fu, J. Alloys Compd. 741, 51 (2018).CrossRefGoogle Scholar
  27. 27.
    Y. Pan, W.M. Guan, and Y.Q. Li, Phys. Chem. Chem. Phys. 20, 15863 (2018).CrossRefGoogle Scholar
  28. 28.
    Y.S. Pogozhev, I.V. Iatsyuk, A.Y. Potanin, E.A. Levashov, A.V. Novikov, and N.A. Kochetov, Ceram. Int. 42, 16758 (2016).CrossRefGoogle Scholar
  29. 29.
    Y. Pan, S. Wang, X. Zhang, and J. Jia, Ceram. Int. 44, 1744 (2018).CrossRefGoogle Scholar
  30. 30.
    Q. Huang, Y. Kang, J. Song, S. Qu, Y. Han, and X. Guo, Met. Mater. Int. 20, 475 (2014).CrossRefGoogle Scholar
  31. 31.
    Y. Pan and W.M. Guan, Ceram. Int. 44, 9893 (2018).CrossRefGoogle Scholar
  32. 32.
    S. Wang, Y. Pan, Y. Lin, and C. Tong, Compd. Mater. Sci. 146, 18 (2018).CrossRefGoogle Scholar
  33. 33.
    Y. Pan, Y.Q. Li, Q.H. Zheng, and Y. Xu, J. Alloys Compd. 786, 621 (2019).CrossRefGoogle Scholar
  34. 34.
    X. Zhao and L. Ma, J. Electron. Mater. 48, 152 (2019).CrossRefGoogle Scholar
  35. 35.
    Y. Pan and C. Jin, Vacuum 143, 165 (2017).CrossRefGoogle Scholar
  36. 36.
    H. Nowotny, E. Dimakopoulou, and H. Kudielka, Monatsh. Chem. 88, 180 (1957).CrossRefGoogle Scholar
  37. 37.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Mater. 14, 2717 (2002).CrossRefGoogle Scholar
  38. 38.
    Y. Pan, Int. J. Hydrog. Energy 43, 3087 (2018).CrossRefGoogle Scholar
  39. 39.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
  40. 40.
    Y. Pan and W.M. Guan, Inorg. Chem. 57, 6617 (2018).CrossRefGoogle Scholar
  41. 41.
    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  42. 42.
    Y. Pan, Ceram. Int. 45, 18315 (2019).CrossRefGoogle Scholar
  43. 43.
    T. Liu, M. Hu, W. Lu, J. Zhan, X. Cui, X. Zhan, and J. Yu, Phys. B 567, 55 (2019).CrossRefGoogle Scholar
  44. 44.
    Y. Pan, Int. J. Hydrog. Energy 44, 18153 (2019).CrossRefGoogle Scholar
  45. 45.
    O.Y. Khyzhun, V.L. Bekenev, N.M. Denysyuk, L.I. Isaenko, A.P. Yelisseyev, A.A. Goloshumova, and A.Y. Tarasova, J. Electron. Mater. 48, 3059 (2019).CrossRefGoogle Scholar
  46. 46.
    Z. Feipeng, Z. Guanglei, Q. Guoqiang, D. Lingzhi, Z. Jingwen, S. Jiali, Y. Xinyu, and Z. Jiuxing, J. Synth. Cryst. 48, 213 (2019).Google Scholar
  47. 47.
    Y. Pan and W. Guan, Int. J. Hydrog. Energy 41, 11033 (2016).CrossRefGoogle Scholar
  48. 48.
    A. Khan, Z. Ali, I. Khan, and I. Ahmad, J. Electron. Mater. 47, 1871 (2018).CrossRefGoogle Scholar
  49. 49.
    Y. Pan, S. Wang, and C. Zhang, Vacuum 151, 205 (2018).CrossRefGoogle Scholar
  50. 50.
    F. Zhang, J. Shi, J. Zhang, L. Bao, G. Qin, G. Zhang, X. Yang, and J. Zhang, Chin. J. High Press. Phys. 33, 022201 (2019).Google Scholar
  51. 51.
    Y. Liu, H. Huang, Y. Pan, G. Zhao, and Z. Liang, J. Alloys Compd. 597, 200 (2014).CrossRefGoogle Scholar
  52. 52.
    Y. Pan, Mater. Res. Bull. 93, 56 (2017).CrossRefGoogle Scholar
  53. 53.
    M. Ellner, J. Alloys Compd. 366, 222 (2004).CrossRefGoogle Scholar
  54. 54.
    Y. Pan, C. Jing, and Y.P. Wu, Vacuum 167, 374 (2019).CrossRefGoogle Scholar
  55. 55.
    L.H. Li, W.L. Wang, L. Hu, and B.B. Wei, Intermetallics 46, 211 (2014).CrossRefGoogle Scholar
  56. 56.
    F.P. Zhang, Q.M. Lu, X. Zhang, and J.X. Zhang, J. Alloys Compd. 509, 542 (2011).CrossRefGoogle Scholar
  57. 57.
    Y. Pan and M. Wen, Vacuum 156, 419 (2018).CrossRefGoogle Scholar
  58. 58.
    L. Ju and S.A. Dar, J. Electron. Mater. 48, 4886 (2019).CrossRefGoogle Scholar
  59. 59.
    Y. Pan and W. Guan, J. Power Sources 325, 246 (2016).CrossRefGoogle Scholar
  60. 60.
    D.E. Kim, S.L. Shang, and Z.K. Liu, Acta Mater. 60, 1846 (2012).CrossRefGoogle Scholar
  61. 61.
    D. Chovan, M. Nolan, and S.A.M. Tofail, J. Alloys Compd. 630, 54 (2015).CrossRefGoogle Scholar
  62. 62.
    S.F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
  63. 63.
    Y. Pan, Y. Lin, H. Wang, and C. Zhang, Mater. Des. 86, 259 (2015).CrossRefGoogle Scholar
  64. 64.
    X. Tao, H. Chen, X. Tong, Y. Ouyang, P. Jund, and J.C. Tedenac, Compd. Mater. Sci. 53, 169 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouthwest Petroleum UniversityChengduChina

Personalised recommendations