Advertisement

Preparation of Nb2O5-Al2O3 Composite Anodic Oxide Film for an Aluminum Electrolytic Capacitor by Electrodeposition-Annealing and Anodization

  • Chao-Lei BanEmail author
  • Zhen-Qi Liu
  • Jian-Hai Chen
  • Yi-bin Yin
  • Kun Zhang
Article
  • 2 Downloads

Abstract

Nb was electrodeposited on etched aluminum foils for an Al electrolytic capacitor. After annealing at 500°C in air, the foils were anodized in H3BO4 solution at 530 V to form Nb2O5-Al2O3 composite anodic oxide film as a dielectric layer. The voltage–time variations during the anodization process were monitored. The structure, composition, and electrical properties of the anodized foils were investigated by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and electrochemical impedance spectroscopy. The obtained foils were assembled into aluminum electrolytic capacitors, and the capacitor performance was tested according to the Japanese Nichicon standard. It was found that after electrodeposition and annealing, the slope of the voltage–time curve of the aluminum foil became steeper during the anodization process. The composite anodic oxide film showed a triple-layer structure consisting of Nb2O5/Al-NbOx/Al2O3 layers. The specific capacitance (C and Cox) of the composite anodic film was about 14% greater than that of the aluminum anodic oxide film. However, the leakage current (I) of the composite film was increased and its specific resistance (Rox) and withstanding voltage (Uw) decreased relative to the aluminum anodic oxide film, probably due to the greater number of intrinsic defects. During the load life and shelf life test, the composite anodic oxide film demonstrated capacitor performance similar to that of the aluminum anodic film, and can thus be used as a dielectric layer for capacitors to enhance specific capacitance.

Keywords

Aluminum electrolytic capacitor anodic oxide film Al foil specific capacitance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work is financially supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2017MEM019), the Technology and Culture Innovation Fund for Students of Liaocheng University (Grant No. 26312171923) and Scientific Research Projects of University in Shan Dong Province (Grant No. KJ2018BBA043).

References

  1. 1.
    S.Q. Zhu, C.L. Ban, and L.J. Jiang, J. Mater. Sci.: Mater. Electron. 26, 5703 (2015).Google Scholar
  2. 2.
    S.Q. Zhu, C.L. Ban, X.Q. Tao, W.Y. Chen, and L.J. Jiang, J. Mater. Sci.: Mater. Electron. 26, 6750 (2015).Google Scholar
  3. 3.
    H. Uchi, T. Kanno, and R.S. Alwitt, J. Electrochem. Soc. 148, 17 (2001).CrossRefGoogle Scholar
  4. 4.
    C.L. Ban, Y.D. He, X. Shao, and T. Nonferr, Metal. Soc. 21, 133 (2011).Google Scholar
  5. 5.
    C.L. Ban, Y.D. He, X. Shao, D. Juan, and L.P. Wang, Trans. Nonferrous Metal. Soc. 23, 3650 (2013).CrossRefGoogle Scholar
  6. 6.
    C.L. Ban, Y.D. He, X. Shao, and D. Juan, Trans. Nonferrous Metal. Soc. 23, 1039 (2013).CrossRefGoogle Scholar
  7. 7.
    C.L. Ban, Y.D. He, and X. Shao, J. Mater. Sci.: Mater. Electron. 24, 3442 (2013).Google Scholar
  8. 8.
    C.L. Ban, Y.D. He, and X. Shao, J. Mater. Sci.: Mater. Electron. 25, 128 (2014).Google Scholar
  9. 9.
    C.L. Ban, Y.D. He, X. Shao, and Z.S. Wang, Corros. Sci. 78, 7 (2014).CrossRefGoogle Scholar
  10. 10.
    C.L. Ban, S.Q. Zhu, X.Q. Tao, and W.Y. Chen, J. Mater. Sci.: Mater. Electron. 27, 12074 (2016).Google Scholar
  11. 11.
    C.L. Ban, J.H. Chen, F.R. Wang, S.Q. Zhu, and Z.Q. Liu, J. Nanosci. Nanotechnol. 19, 7471 (2018).CrossRefGoogle Scholar
  12. 12.
    C.L. Ban, S.Q. Zhu, J.L. Hou, F.R. Wang, and J. Wang, J. Mater. Sci.: Mater. Electron. 28, 6860 (2017).Google Scholar
  13. 13.
    C.L. Ban, F.R. Wang, J.H. Chen, and Z.Q. Liu, J. Mater. Sci.: Mater. Electron. 29, 16166 (2018).Google Scholar
  14. 14.
    C.L. Ban, S.Q. Zhu, J.L. Hou, F.R. Wang, J. Wang, Z.F. Jia, and J.S. Zhao, J. Mater. Sci.: Mater. Electron. 28, 10992 (2017).Google Scholar
  15. 15.
    J. Chen, Z.S. Feng, and B.C. Yang, J. Mater. Sci. 41, 569 (2006).CrossRefGoogle Scholar
  16. 16.
    L. Sun, J. Bu, W. Guo, Y. Wang, M. Wang, and C. Lin, Electrochem. Solid State 15, E1 (2011).CrossRefGoogle Scholar
  17. 17.
    L. Yao, J.H. Liu, M. Yu, S.M. Li, H. Wu, and T. Nonferr, Metal. Soc. 20, 825 (2010).Google Scholar
  18. 18.
    X. Du, K. Men, Y. Xu, B. Li, Z. Yang, Z. Liu, L. Li, T. Feng, W. Rehman, I. Ullah, and S. Mao, J. Colloid Interface Sci. 443, 170 (2015).CrossRefGoogle Scholar
  19. 19.
    Z.S. Feng, J.J. Chen, R. Zhang, and N. Zhao, Ceram. Int. 38, 3057 (2012).CrossRefGoogle Scholar
  20. 20.
    J. Chen, Z.S. Feng, M.L. Jiang, and B.C. Yang, Electroanal. Chem. 590, 26 (2006).CrossRefGoogle Scholar
  21. 21.
    L. Xiang and S.S. Park, Appl. Surf. Sci. 388, 245 (2016).CrossRefGoogle Scholar
  22. 22.
    M. Sunada, H. Takahashi, T. Kikuchi, M. Sakairi, and S. Hirai, J. Solid State Electrochem. 11, 1375 (2007).CrossRefGoogle Scholar
  23. 23.
    K. Zhang and S.S. Park, Surf. Coat. Technol. 310, 143 (2017).CrossRefGoogle Scholar
  24. 24.
    F. Chen and S.S. Park, ECS J. Solid State Sci. 4, 293 (2015).CrossRefGoogle Scholar
  25. 25.
    K. Watanabe, M. Sakairi, H. Takahashi, S. Hirai, and S. Yamaguchi, Electroanal. Chem. 473, 250 (1999).CrossRefGoogle Scholar
  26. 26.
    S.S. Park and B.T. Lee, J. Electroceram. 13, 111 (2004).CrossRefGoogle Scholar
  27. 27.
    X.F. Du and Y.L. Xu, J. Sol-Gel. Sci. Technol. 45, 57 (2008).CrossRefGoogle Scholar
  28. 28.
    L. Xiang and S.S. Park, Thin Solid Films 623, 19 (2017).CrossRefGoogle Scholar
  29. 29.
    Y.H. Wang, J. Yang, and J.Z. Wang, Ceram. Int. 34, 1285 (2008).CrossRefGoogle Scholar
  30. 30.
    Y.L. Xu, Ceram. Int. 30, 1741 (2004).CrossRefGoogle Scholar
  31. 31.
    J.F. Bu, L. Sun, Q. Wu, M.Y. Wang, and C.J. Lin, Sci. China Chem. 54, 1558 (2011).CrossRefGoogle Scholar
  32. 32.
    C.L. Ban, J.L. Hou, S.Q. Zhu, and C.Z. Wang, J. Mater. Sci.: Mater. Electron. 27, 1547 (2016).Google Scholar
  33. 33.
    H.P.A. Ali, N. Tamura, and A.S. Budiman, IEEE Trans. Dev. Mater. Reliab. 18, 490 (2018).CrossRefGoogle Scholar
  34. 34.
    I. Radchenko, S.K. Tippabhotla, N. Tamura, and A.S. Budiman, J. Electron. Mater. 45, 6222 (2016).CrossRefGoogle Scholar
  35. 35.
    K. Watanabe, M. Sakairi, H. Takahashi, K. Takahiro, S. Nagata, and S. Hiraic, J. Electrochem. Soc. 148, B473 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengChina
  2. 2.School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations