Advertisement

Tunable Magnetoelectric Response in Cofired (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)/CoFe2O4 Laminated Composite

  • Yulan Cheng
  • Sheng LiuEmail author
  • Kexiang Wei
  • Shuoqing Yan
  • Shengxiang Huang
  • Lianwen Deng
Article
  • 6 Downloads

Abstract

Magnetoelectric (ME) composites exhibiting strain-mediated coupling are gaining increasing interest for applications. In this paper, an enhancement of ME response on simple lead-free laminated composites (80Bi0.5Na0.5TiO3-20Bi0.5K0.5TiO3)/CoFe2O4 (BNKT/CFO) prepared by a modified cofiring processing were demonstrated, by analyzing the effect of thickness variation on ME properties. The coexistence of independent BNKT and CFO phase and the presence of a clear and well-bonded interface were confirmed. Specifically, the maximum ME voltage coefficient of laminated composite reached up to 74.59 mV/(cm·Oe) with an optimized BNKT/CFO layer thickness ratio of 1:2. The static elastic model and the equivalent circuit model were used to determine the interface coupling. Also, there is a large magnetodielectric (MD) response up to 5.1% in a magnetic field of 8 kOe. Tuning the layer thickness, the ME response of laminated composite is further optimized, which is of significance in development of magnetic-field-tuned electronic devices.

Keywords

Magnetoelectricity laminated composite cofiring processing thickness dependence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (grant no. 2017YFA0204600) and the National Natural Science Foundation of China (grant no. 51902104).

References

  1. 1.
    W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).Google Scholar
  2. 2.
    M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005).CrossRefGoogle Scholar
  3. 3.
    H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, Actuators 5, 9 (2016).CrossRefGoogle Scholar
  4. 4.
    D. Nanda, P. Kumar, B. Samanta, R. Sahu, and A. Singh, J. Electron. Mater. 48, 5039 (2019).CrossRefGoogle Scholar
  5. 5.
    S. Dong, J.M. Liu, S.W. Cheong, and Z.F. Ren, Adv. Phys. 64, 519 (2015).CrossRefGoogle Scholar
  6. 6.
    C.W. Nan, M.I. Bichurin, S.X. Dong, and D. Viehland, J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Xue, R. Xu, Z. Wang, R. Gao, C. Li, G. Chen, X. Deng, W. Cai, and C. Fu, J. Electron. Mater. 48, 4806 (2019).CrossRefGoogle Scholar
  8. 8.
    H.B. Yang, J.T. Zhang, Y. Lin, and T. Wang, Sci. Rep. 7, 44855 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Liu, L.W. Deng, S.Q. Yan, H. Luo, L.L. Yao, L.H. He, Y.H. Li, M.Z. Wu, and S.X. Huang, J. Appl. Phys. 122, 034103 (2017).CrossRefGoogle Scholar
  10. 10.
    H. Palneedi, D. Maurya, G.Y. Kim, S. Priya, S.L. Kang, K.H. Kim, S.Y. Choi, and J. Ryu, Appl. Phys. Lett. 107, 012904 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Yan, Y. Zhou, and S. Priya, Appl. Phys. Lett. 102, 052907 (2013).CrossRefGoogle Scholar
  12. 12.
    C.M. Leung, X. Zhuang, J. Xu, J. Li, G. Srinivasan, and D. Viehland, Appl. Phys. Lett. 110, 112904 (2017).CrossRefGoogle Scholar
  13. 13.
    Z.Q. Chu, H.D. Shi, W.L. Shi, G.X. Liu, J. Wu, J.K. Yang, and S.X. Dong, Adv. Mater. 29, 1606022 (2017).CrossRefGoogle Scholar
  14. 14.
    M. Otonicar, S.D. Skapin, M. Spreitzer, and D. Suvorov, J. Eur. Ceram. Soc. 30, 971 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Alguero, and H. Amorin, J. Phys. D Appl. Phys. 47, 055304 (2014).CrossRefGoogle Scholar
  16. 16.
    J.P. Praveen, V.R. Monaji, S.D. Kumar, V. Subramanian, and D. Das, Ceram. Int. 44, 4298 (2018).Google Scholar
  17. 17.
    H.B. Yang, G. Zhang, and Y. Lin, Mater. Lett. 164, 388 (2016).CrossRefGoogle Scholar
  18. 18.
    H. Amorín, M. Algueró, R.D. Campo, E. Vila, P. Ramos, M. Dollé, Y. Romaguera-Barcelay, J.P. Cruz, and A. Castro, Sci. Technol. Adv. Mater. 16, 016001 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland, J. Am. Ceram. Soc. 91, 351–358 (2008).CrossRefGoogle Scholar
  20. 20.
    M. Kumari, A. Singh, A. Gupta, C. Prakash, and R. Chatterjee, J. Appl. Phys. 116, 244101 (2014).CrossRefGoogle Scholar
  21. 21.
    Y. Lin, J. Zhang, H. Yang, and T. Wang, J. Alloys Compd. 692, 86 (2016).CrossRefGoogle Scholar
  22. 22.
    R.A. Islam, C.B. Rong, J.P. Liu, and S. Priya, J. Mater. Sci. 43, 6337 (2008).CrossRefGoogle Scholar
  23. 23.
    H. Yang, G. Zhang, and Y. Lin, J. Alloys Compd. 644, 390 (2015).CrossRefGoogle Scholar
  24. 24.
    S. Liu, S.Q. Yan, L.L. Yao, J. He, L.H. He, Z.W. Hu, S.X. Huang, and L.W. Deng, J. Magn. Magn. Mater. 444, 284 (2017).CrossRefGoogle Scholar
  25. 25.
    S.D. Bhame and P.A. Joy, Sens. Actuators A 137, 256 (2007).CrossRefGoogle Scholar
  26. 26.
    K.K. Mohaideen and P.A. Joy, Appl. Phys. Lett. 101, 072405 (2012).CrossRefGoogle Scholar
  27. 27.
    D. Rout, K.S. Moon, V.S. Rao, and S. Kang, J. Ceram. Soc. Jpn. 117, 797 (2009).CrossRefGoogle Scholar
  28. 28.
    H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti, and H. Khemakhem, J. Alloys Compd. 618, 643 (2015).CrossRefGoogle Scholar
  29. 29.
    R. Sharma and R.P. Tandon, J. Mater. Sci.: Mater. Electron. 26, 5287 (2015).Google Scholar
  30. 30.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).CrossRefGoogle Scholar
  31. 31.
    J.F. Scott, J. Phys.: Condens. Matter 20, 021001 (2008).Google Scholar
  32. 32.
    H. Yang, G. Zhang, Y. Lin, and F. Wang, J. Mater. Sci.: Mater. Electron. 27, 6586 (2016).Google Scholar
  33. 33.
    M.I. Bichurin, V.M. Petrov, and G. Srinivasan, Phys. Rev. B. 68, 054402 (2003).CrossRefGoogle Scholar
  34. 34.
    M.I. Bichurin, V.M. Petrov, and G. Srinivasan, J. Appl. Phys. 92, 7681 (2002).CrossRefGoogle Scholar
  35. 35.
    G. Lou, X. Yu, and S. Lu, Sensors 17, 1399 (2017).Google Scholar
  36. 36.
    T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).CrossRefGoogle Scholar
  37. 37.
    G. Catalan, Appl. Phys. Lett. 88, 102902 (2006).CrossRefGoogle Scholar
  38. 38.
    S.A. Gridnev, A.V. Kalgin, and V.A. Chernykh, Integr. Ferroelectr. 109, 70 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yulan Cheng
    • 1
  • Sheng Liu
    • 1
    Email author
  • Kexiang Wei
    • 1
  • Shuoqing Yan
    • 2
  • Shengxiang Huang
    • 3
  • Lianwen Deng
    • 3
  1. 1.Hunan Provincial Key Laboratory of Vehicle Power and Transmission SystemHunan Institute of EngineeringXiangtanChina
  2. 2.College of Computational Science and ElectronicsHunan Institute of EngineeringXiangtanChina
  3. 3.School of Physics and ElectronicsCentral South UniversityChangshaChina

Personalised recommendations