Advertisement

Synthesis and Thermoelectric Properties of Cu12−xNixSb4S13 Tetrahedrites

  • Sung-Yoon Kim
  • Go-Eun Lee
  • Il-Ho KimEmail author
Topical Collection: International Conference on Thermoelectrics 2019
  • 13 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2019

Abstract

Ni-doped tetrahedrites Cu12−xNixSb4S13 (x = 0.1–0.4) were prepared by mechanical alloying (MA) and sintered by hot pressing (HP). The tetrahedrite phase could be synthesized by MA without post-annealing, and was stable after HP without phase transition. As the Ni content increased, the lattice constant decreased from 1.0312 nm to 1.0246 nm, confirming that the Ni was successfully substituted for Cu sites. As the Ni content increased, the Seebeck coefficient increased but the electrical conductivity decreased because the carrier (hole) concentration decreased owing to the substitution of Ni2+ at the Cu+ site. The power factor of 1.0 mW m−1 K−2 was obtained at 723 K for the Ni-doped specimen with x = 0.1, and decreased with increasing Ni content. In addition, as the Ni content increased, the electronic thermal conductivity decreased, but the total thermal conductivity of the specimen with Ni content x = 0.2 showed the lowest value of 0.65–0.79 W m−1 K−1 at 323–723 K owing to the lowest lattice thermal conductivity of 0.38 W m−1 K−1 at 723 K. As a result, the dimensionless figure of merit ZT = 0.92 was obtained at 723 K for Cu11.8Ni0.2Sb4S13.

Keywords

Tetrahedrite thermoelectric doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the Industrial Core Technology Development Program funded by the Ministry of Trade, Industry and Energy (Grant No. 10083640), and by the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (Grant No. 2019R1A6C1010047).

References

  1. 1.
    K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Exp. 5, 1201 (2012).CrossRefGoogle Scholar
  2. 2.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  3. 3.
    T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Bouyrie, C. Candolfi, S. Pailhès, M.M. Koza, B. Malaman, A. Dauscher, J. Tobola, O. Boisron, L. Saviot, and B. Lenoir, Phys. Chem. Chem. Phys. 17, 19751 (2015).CrossRefGoogle Scholar
  5. 5.
    X. Lu, W. Lai, Y. Wang, and D.T. Morelli, Adv. Funct. Mater. 25, 3648 (2015).CrossRefGoogle Scholar
  6. 6.
    D.T. Morelli, E. Lara-Curzio, A.F. May, O. Delaire, M.A. McGuire, X. Lu, C.Y. Liu, and E.D. Case, J. Appl. Phys. 115, 193515 (2014).CrossRefGoogle Scholar
  7. 7.
    X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).CrossRefGoogle Scholar
  8. 8.
    L.L. Huang, J. Zhang, Z.M. Wang, X.G. Zhu, J.M. Li, C. Zhu, D. Li, C.J. Song, H.X. Xin, and X.Y. Qin, Materialia 3, 169 (2018).CrossRefGoogle Scholar
  9. 9.
    A.F. May, O. Delaire, J.L. Niedziela, E. Lara-Curzio, M.A. Susner, D.L. Abernathy, M. Kirkham, and M.A. McGuire, Phys. Rev. B 93, 064104 (2016).CrossRefGoogle Scholar
  10. 10.
    Y.Q. Yu, B.P. Zhang, Z.H. Ge, P.P. Shang, and Y.X. Chen, Mater. Chem. Phys. 131, 1 (2011).CrossRefGoogle Scholar
  11. 11.
    S.Y. Kim, S.G. Kwak, J.H. Pi, G.E. Lee, and I.H. Kim, J. Electron. Mater. 48, 1857 (2019).CrossRefGoogle Scholar
  12. 12.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  13. 13.
    S. Tippireddy, R. Chetty, M.H. Naik, M. Jain, K. Chattopadhyay, and R.C. Mallik, J. Phys. Chem. C 122, 8735 (2018).CrossRefGoogle Scholar
  14. 14.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  15. 15.
    F. Sun, J. Dong, S. Dey, Asfandiyar, C. Wu, Y. Pan, H. Tang, and J. Li, Sci. Chin. Mater. 61, 1209 (2018).CrossRefGoogle Scholar
  16. 16.
    T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).CrossRefGoogle Scholar
  17. 17.
    D.P. Weller, D.L. Stevens, G.E. Kunkel, A.M. Ochs, C.F. Holder, D.T. Morelli, and M.E. Anderson, Chem. Mater. 29, 1656 (2017).CrossRefGoogle Scholar
  18. 18.
    X. Yan, B. Poudel, Y. Ma, W. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. Ren, Nano Lett. 10, 3373 (2010).CrossRefGoogle Scholar
  19. 19.
    H. Cailat, A. Borshchevsky, and J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
  20. 20.
    B. Madaval and S.J. Hong, J. Electron. Mater. 45, 12 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations