Advertisement

Removal of Lead by Tetra Hydroxyl Phenyl Porphyrin-Linked Magnetic Nanoparticles: Process Optimization by Using Taguchi Design Method

  • Ensieh Gholamrezapor
  • Abbas EslamiEmail author
Article

Abstract

Fe3O4@SiO2@THPP (MSTHPP) nanocomposite was prepared as an adsorbent for the removal of lead ions. The structural characteristics of thisnanocomposite were determined using Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy, x-ray diffraction, vibrating sample magnetometry (VSM), and N2 adsorption-desorption analyses. SEM images showed that the magnetic nanoparticles have uniform morphologies with a mean size of 20 nm. The magnetic properties of the synthesized nanocomposite were measured on a VSM with maximum saturation magnetization values of 40 emug-1 and 10 emug-1 for Fe3O4@SiO2 and MSTHPP nanocomposites, respectively. MSTHPP has been efficiently used to remove lead ions from aqueous solutions. After the lead sorption process, the nanocomposite was magnetically separated from the mixture and showed good reusability. The effects of pH, contact time, adsorbent dosage and initial concentration of lead in the removal of lead were investigated. Optimization of the parameters was performed by using Taguchi design method to obtain the maximum removal efficiency. The optimized condition can be achieved when pH, contact time, adsorbent dosage and initial concentration of lead are 5.3 min, 30 min, 50 mg, 20 ppm, respectively. The M, MS, and MSTHPP lead removal efficiency was found to be 18%, 25%, and 97%, respectively.

Keywords

Porphyrin magnetic particles Taguchi method lead removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We gratefully acknowledged financial support from the Research Council of the University of Mazandaran.

References

  1. 1.
    M. Golshekan and S. Shariati, Acta chem. Slov 60, 358 (2013).Google Scholar
  2. 2.
    M. Emadi, E. Shams, and M.K. Amini, J. Chem 2013, 1 (2012).CrossRefGoogle Scholar
  3. 3.
    T. Poursaberi, H. Ghanbarnejad, and V. Akbar, J. Nano. Struct. 2, 417 (2013).Google Scholar
  4. 4.
    E. Bilgin, M. Yuce, K. Kose, K. Erol, and D.A. Kose, Hitite. J. Sci. Eng. 4, 1 (2017).CrossRefGoogle Scholar
  5. 5.
    S. Bakhshayesh and H. Dehghani, Mater. Res. Bull. 48, 2614 (2013).CrossRefGoogle Scholar
  6. 6.
    E. Blicharska, M. Tatarczak-Michalewska, A. Plazińska, W. Plaziński, A. Kowalska, A. Madejska, M. Szymańska-Chargot, A. Sroka-Bartnicka, and J. Flieger, J. Sep. Sci 41, 3129 (2018).CrossRefGoogle Scholar
  7. 7.
    H.M. Baker, A.M. Massadeh, and H.A. Younes, Environ. Monit. Assess 157, 319 (2009).CrossRefGoogle Scholar
  8. 8.
    M.J. Gonzalez-Munoz, M.A. Rodriguez, S. Luque, and J.R. Alvarez, Desalination 200, 742 (2006).CrossRefGoogle Scholar
  9. 9.
    M.G. Khedr, Water Treat. 2, 342 (2009).CrossRefGoogle Scholar
  10. 10.
    Z.-H. Huang, X. Zheng, W. Lv, M. Wang, Q.-H. Yang, and F. Kang, Langmuir 27, 7558 (2011).CrossRefGoogle Scholar
  11. 11.
    L. Fan, C. Luo, M. Sun, X. Li, and H. Qiu, Colloid Surf. B. Biointerfaces 103, 523 (2013).CrossRefGoogle Scholar
  12. 12.
    X. Liu, Q. Hu, Z. Fang, X. Zhang, and B. Zhang, Langmuir 25, 3 (2008).CrossRefGoogle Scholar
  13. 13.
    M. Khazaei, S. Nasseri, M.R. Ganjali, M. Khoobi, R. Nabizadeh, A.H. Mahvi, S. Nazmara, and E. Gholibegloo, J. Environ. Health Sci. Eng. 14, 1 (2016).CrossRefGoogle Scholar
  14. 14.
    Y. Tan, M. Chen, and Y. Hao, Chem. Eng. J. 191, 104 (2012).CrossRefGoogle Scholar
  15. 15.
    Z. Khayat Sarkar and F. Khayat Sarkar, Int. J. Nanosci. Nanotechnol 9, 109 (2013).Google Scholar
  16. 16.
    S. Rajput, C.U. Pittman Jr, and D. Mohan, J. Colloid Interface Sci. 468, 334 (2016).CrossRefGoogle Scholar
  17. 17.
    A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat, and M.S. Uddin, Carbo. Poly 91, 322 (2013).CrossRefGoogle Scholar
  18. 18.
    X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, and H. Li, Chem. Eng. J. 184, 132 (2012).CrossRefGoogle Scholar
  19. 19.
    X. Peng, F. Xu, W. Zhang, J. Wang, C. Zeng, M. Niu, and E. Chmielewská, Colloids Surf., A: Phys.Chem. Eng.Asp 443, 27 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Recillas, A. Garcia, E. Gonzalez, E. Casals, V. Puntes, A. Sanchez, and X. Font, Desalination 277, 213 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Kumari, C.U. Pittman Jr, and D. Mohan, J. Colloid Interface Sci. 442, 120 (2015).CrossRefGoogle Scholar
  22. 22.
    L. Dong, Z. Zhu, Y. Qiu, and J. Zhao, Chem. Eng. J. 165, 827 (2010).CrossRefGoogle Scholar
  23. 23.
    P. Panneerselvam, N. Morad, and K.A. Tan, J. Hazard. Mater. 186, 160 (2011).CrossRefGoogle Scholar
  24. 24.
    L. Sun, Y. Li, M. Sun, H. Wang, S. Xu, C. Zhang, and Q. Yang, New J. Chem. 35, 2697 (2011).CrossRefGoogle Scholar
  25. 25.
    Y. Deng, D. Qi, C. Deng, X. Zhang, and D. Zhao, J. ACS. 130, 28 (2008).Google Scholar
  26. 26.
    R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun, Adv. Mater. 22, 2729 (2010).CrossRefGoogle Scholar
  27. 27.
    B.J. Kim, J. Bang, C.J. Hawker, J.J. Chiu, D.J. Pine, S.G. Jang, S.-M. Yang, and E.J. Kramer, Langmuir 23, 12693 (2007).CrossRefGoogle Scholar
  28. 28.
    S. Hou, X. Li, H. Wang, M. Wang, Y. Zhang, Y. Chi, and Z. Zhao, RSC Adv. 7, 51993 (2017).CrossRefGoogle Scholar
  29. 29.
    T. Sen, A. Sebastianelli, and I.J. Bruce, J. ACS. 128, 7130 (2006).Google Scholar
  30. 30.
    M.O. Ojemaye, O.O. Okoh, and A.I. Okoh, J. Nanomater. 2017, 1 (2017).CrossRefGoogle Scholar
  31. 31.
    T. Poursaberi, V. Akbar, and S.M.R. Shoja, Iran. J. Chem. Eng. 34, 41 (2015).Google Scholar
  32. 32.
    E. Aguilera-Ruiz, U.M. Garcĺa-Pérez, M. de la Garza-Galván, P. Zambrano-Robledo, B. Bermúdez-Reyes, and J. Peral, Appl. Surf. Sci. 328, 361 (2015).CrossRefGoogle Scholar
  33. 33.
    J. Niu, B. Yao, Y. Chen, C. Peng, X. Yu, J. Zhang, and G. Bai, Appl. Surf. Sci. 271, 39 (2013).CrossRefGoogle Scholar
  34. 34.
    W.M. Campbell, A.K. Burrell, D.L. Officer, and K.W. Jolley, Coord. Chem. Rev. 248, 1363 (2004).CrossRefGoogle Scholar
  35. 35.
    E. Gholamrezapor and A. Eslami, J. Mater. Sci: Mater. Elec. 30, 4705 (2019).Google Scholar
  36. 36.
    V.N. Nair, B. Abraham, J. MacKay, G. Box, R.N. Kacker, T.J. Lorenzen, J.M. Lucas, R.H. Myers, G.G. Vining, and J.A. Nelder, Technometrics 34, 127 (1992).CrossRefGoogle Scholar
  37. 37.
    P.T. Dhorabe, D.H. Lataye, A.R. Tenpe, and R.S. Ingole, SN Appl. Sci. 1, 250 (2019).CrossRefGoogle Scholar
  38. 38.
    F. Googerdchian, A. Moheb, R. Emadi, and M. Asgari, J. Hazard. Mater. 349, 186 (2018).CrossRefGoogle Scholar
  39. 39.
    V.C. Srivastava, I.D. Mall, and I.M. Mishra, Chem. Eng. J. 140, 136 (2008).CrossRefGoogle Scholar
  40. 40.
    X. Zheng, L. Zhang, J. Li, S. Luo, and J.-P. Cheng, Chem. Commun. 47, 12325 (2011).CrossRefGoogle Scholar
  41. 41.
    J.M. Perez, F.J. Simeone, Y. Saeki, L. Josephson, and R. Weissleder, J. ACS. 125, 10192 (2003).Google Scholar
  42. 42.
    M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, and T. Hyeon, Angew. Chem. 119, 7169 (2007).CrossRefGoogle Scholar
  43. 43.
    A. Zielińska-Jurek, Z. Bielan, S. Dudziak, I. Wolak, Z. Sobczak, T. Klimczuk, and J. Hupka, Catalysts 7, 360 (2017).CrossRefGoogle Scholar
  44. 44.
    V.D. Rumyantseva, A.S. Gorshkova, and A.F. Mironov, Macroheterocycles 6, 59 (2013).CrossRefGoogle Scholar
  45. 45.
    N. Salamun, H.X. Ni, S. Triwahyono, A.A. Jalil, and A.H. Karim, Malays. J. Fundam. Appl. Sci. 7, 89 (2011).Google Scholar
  46. 46.
    A. Patterson, Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
  47. 47.
    Y. Liu, R. Fu, Y. Sun, X. Zhou, S.A. Baig, and X. Xu, Appl. Surf. Sci. 369, 267 (2016).CrossRefGoogle Scholar
  48. 48.
    H. Ghanbarnejad, T. Poursaberi, and V. Akbar, J. Nano. Struc. 2, 417 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations