Removal of Lead by Tetra Hydroxyl Phenyl Porphyrin-Linked Magnetic Nanoparticles: Process Optimization by Using Taguchi Design Method
Abstract
Fe3O4@SiO2@THPP (MSTHPP) nanocomposite was prepared as an adsorbent for the removal of lead ions. The structural characteristics of thisnanocomposite were determined using Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy, x-ray diffraction, vibrating sample magnetometry (VSM), and N2 adsorption-desorption analyses. SEM images showed that the magnetic nanoparticles have uniform morphologies with a mean size of 20 nm. The magnetic properties of the synthesized nanocomposite were measured on a VSM with maximum saturation magnetization values of 40 emug-1 and 10 emug-1 for Fe3O4@SiO2 and MSTHPP nanocomposites, respectively. MSTHPP has been efficiently used to remove lead ions from aqueous solutions. After the lead sorption process, the nanocomposite was magnetically separated from the mixture and showed good reusability. The effects of pH, contact time, adsorbent dosage and initial concentration of lead in the removal of lead were investigated. Optimization of the parameters was performed by using Taguchi design method to obtain the maximum removal efficiency. The optimized condition can be achieved when pH, contact time, adsorbent dosage and initial concentration of lead are 5.3 min, 30 min, 50 mg, 20 ppm, respectively. The M, MS, and MSTHPP lead removal efficiency was found to be 18%, 25%, and 97%, respectively.
Keywords
Porphyrin magnetic particles Taguchi method lead removalPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
We gratefully acknowledged financial support from the Research Council of the University of Mazandaran.
References
- 1.M. Golshekan and S. Shariati, Acta chem. Slov 60, 358 (2013).Google Scholar
- 2.M. Emadi, E. Shams, and M.K. Amini, J. Chem 2013, 1 (2012).CrossRefGoogle Scholar
- 3.T. Poursaberi, H. Ghanbarnejad, and V. Akbar, J. Nano. Struct. 2, 417 (2013).Google Scholar
- 4.E. Bilgin, M. Yuce, K. Kose, K. Erol, and D.A. Kose, Hitite. J. Sci. Eng. 4, 1 (2017).CrossRefGoogle Scholar
- 5.S. Bakhshayesh and H. Dehghani, Mater. Res. Bull. 48, 2614 (2013).CrossRefGoogle Scholar
- 6.E. Blicharska, M. Tatarczak-Michalewska, A. Plazińska, W. Plaziński, A. Kowalska, A. Madejska, M. Szymańska-Chargot, A. Sroka-Bartnicka, and J. Flieger, J. Sep. Sci 41, 3129 (2018).CrossRefGoogle Scholar
- 7.H.M. Baker, A.M. Massadeh, and H.A. Younes, Environ. Monit. Assess 157, 319 (2009).CrossRefGoogle Scholar
- 8.M.J. Gonzalez-Munoz, M.A. Rodriguez, S. Luque, and J.R. Alvarez, Desalination 200, 742 (2006).CrossRefGoogle Scholar
- 9.M.G. Khedr, Water Treat. 2, 342 (2009).CrossRefGoogle Scholar
- 10.Z.-H. Huang, X. Zheng, W. Lv, M. Wang, Q.-H. Yang, and F. Kang, Langmuir 27, 7558 (2011).CrossRefGoogle Scholar
- 11.L. Fan, C. Luo, M. Sun, X. Li, and H. Qiu, Colloid Surf. B. Biointerfaces 103, 523 (2013).CrossRefGoogle Scholar
- 12.X. Liu, Q. Hu, Z. Fang, X. Zhang, and B. Zhang, Langmuir 25, 3 (2008).CrossRefGoogle Scholar
- 13.M. Khazaei, S. Nasseri, M.R. Ganjali, M. Khoobi, R. Nabizadeh, A.H. Mahvi, S. Nazmara, and E. Gholibegloo, J. Environ. Health Sci. Eng. 14, 1 (2016).CrossRefGoogle Scholar
- 14.Y. Tan, M. Chen, and Y. Hao, Chem. Eng. J. 191, 104 (2012).CrossRefGoogle Scholar
- 15.Z. Khayat Sarkar and F. Khayat Sarkar, Int. J. Nanosci. Nanotechnol 9, 109 (2013).Google Scholar
- 16.S. Rajput, C.U. Pittman Jr, and D. Mohan, J. Colloid Interface Sci. 468, 334 (2016).CrossRefGoogle Scholar
- 17.A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat, and M.S. Uddin, Carbo. Poly 91, 322 (2013).CrossRefGoogle Scholar
- 18.X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, and H. Li, Chem. Eng. J. 184, 132 (2012).CrossRefGoogle Scholar
- 19.X. Peng, F. Xu, W. Zhang, J. Wang, C. Zeng, M. Niu, and E. Chmielewská, Colloids Surf., A: Phys.Chem. Eng.Asp 443, 27 (2014).CrossRefGoogle Scholar
- 20.S. Recillas, A. Garcia, E. Gonzalez, E. Casals, V. Puntes, A. Sanchez, and X. Font, Desalination 277, 213 (2011).CrossRefGoogle Scholar
- 21.M. Kumari, C.U. Pittman Jr, and D. Mohan, J. Colloid Interface Sci. 442, 120 (2015).CrossRefGoogle Scholar
- 22.L. Dong, Z. Zhu, Y. Qiu, and J. Zhao, Chem. Eng. J. 165, 827 (2010).CrossRefGoogle Scholar
- 23.P. Panneerselvam, N. Morad, and K.A. Tan, J. Hazard. Mater. 186, 160 (2011).CrossRefGoogle Scholar
- 24.L. Sun, Y. Li, M. Sun, H. Wang, S. Xu, C. Zhang, and Q. Yang, New J. Chem. 35, 2697 (2011).CrossRefGoogle Scholar
- 25.Y. Deng, D. Qi, C. Deng, X. Zhang, and D. Zhao, J. ACS. 130, 28 (2008).Google Scholar
- 26.R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun, Adv. Mater. 22, 2729 (2010).CrossRefGoogle Scholar
- 27.B.J. Kim, J. Bang, C.J. Hawker, J.J. Chiu, D.J. Pine, S.G. Jang, S.-M. Yang, and E.J. Kramer, Langmuir 23, 12693 (2007).CrossRefGoogle Scholar
- 28.S. Hou, X. Li, H. Wang, M. Wang, Y. Zhang, Y. Chi, and Z. Zhao, RSC Adv. 7, 51993 (2017).CrossRefGoogle Scholar
- 29.T. Sen, A. Sebastianelli, and I.J. Bruce, J. ACS. 128, 7130 (2006).Google Scholar
- 30.M.O. Ojemaye, O.O. Okoh, and A.I. Okoh, J. Nanomater. 2017, 1 (2017).CrossRefGoogle Scholar
- 31.T. Poursaberi, V. Akbar, and S.M.R. Shoja, Iran. J. Chem. Eng. 34, 41 (2015).Google Scholar
- 32.E. Aguilera-Ruiz, U.M. Garcĺa-Pérez, M. de la Garza-Galván, P. Zambrano-Robledo, B. Bermúdez-Reyes, and J. Peral, Appl. Surf. Sci. 328, 361 (2015).CrossRefGoogle Scholar
- 33.J. Niu, B. Yao, Y. Chen, C. Peng, X. Yu, J. Zhang, and G. Bai, Appl. Surf. Sci. 271, 39 (2013).CrossRefGoogle Scholar
- 34.W.M. Campbell, A.K. Burrell, D.L. Officer, and K.W. Jolley, Coord. Chem. Rev. 248, 1363 (2004).CrossRefGoogle Scholar
- 35.E. Gholamrezapor and A. Eslami, J. Mater. Sci: Mater. Elec. 30, 4705 (2019).Google Scholar
- 36.V.N. Nair, B. Abraham, J. MacKay, G. Box, R.N. Kacker, T.J. Lorenzen, J.M. Lucas, R.H. Myers, G.G. Vining, and J.A. Nelder, Technometrics 34, 127 (1992).CrossRefGoogle Scholar
- 37.P.T. Dhorabe, D.H. Lataye, A.R. Tenpe, and R.S. Ingole, SN Appl. Sci. 1, 250 (2019).CrossRefGoogle Scholar
- 38.F. Googerdchian, A. Moheb, R. Emadi, and M. Asgari, J. Hazard. Mater. 349, 186 (2018).CrossRefGoogle Scholar
- 39.V.C. Srivastava, I.D. Mall, and I.M. Mishra, Chem. Eng. J. 140, 136 (2008).CrossRefGoogle Scholar
- 40.X. Zheng, L. Zhang, J. Li, S. Luo, and J.-P. Cheng, Chem. Commun. 47, 12325 (2011).CrossRefGoogle Scholar
- 41.J.M. Perez, F.J. Simeone, Y. Saeki, L. Josephson, and R. Weissleder, J. ACS. 125, 10192 (2003).Google Scholar
- 42.M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, and T. Hyeon, Angew. Chem. 119, 7169 (2007).CrossRefGoogle Scholar
- 43.A. Zielińska-Jurek, Z. Bielan, S. Dudziak, I. Wolak, Z. Sobczak, T. Klimczuk, and J. Hupka, Catalysts 7, 360 (2017).CrossRefGoogle Scholar
- 44.V.D. Rumyantseva, A.S. Gorshkova, and A.F. Mironov, Macroheterocycles 6, 59 (2013).CrossRefGoogle Scholar
- 45.N. Salamun, H.X. Ni, S. Triwahyono, A.A. Jalil, and A.H. Karim, Malays. J. Fundam. Appl. Sci. 7, 89 (2011).Google Scholar
- 46.A. Patterson, Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
- 47.Y. Liu, R. Fu, Y. Sun, X. Zhou, S.A. Baig, and X. Xu, Appl. Surf. Sci. 369, 267 (2016).CrossRefGoogle Scholar
- 48.H. Ghanbarnejad, T. Poursaberi, and V. Akbar, J. Nano. Struc. 2, 417 (2012).Google Scholar