Advertisement

Synthesis and Characterization of Next Generation Cu2ZnxFe1−xSnS4 (x = 0, 0.25, 0.5, 0.75 and 1) Compounds

  • H. OueslatiEmail author
  • M. Ben Rabeh
  • M. Kanzari
Article
  • 13 Downloads

Abstract

In this paper, we investigate the effect of Zn/Fe ratio on the properties of Cu2ZnxFe1−xSnS4 (CZFTS) compounds. Multicomponent CZFTS powders were prepared by direct melting of the constituent elements taken in stoichiometric compositions. After that, CZFTS thin films were fabricated using a single source vacuum thermal evaporation method. After that, CZFTS thin films were annealed in sulfur atmosphere under nitrogen flow at 400°C for 30 min. Structural properties of CZFTS powders and thin films were studied by elemental composition measurement, x-ray diffraction (XRD) and Raman spectroscopy. Analysis of chemical compositions reveals that the synthesized CZFTS powders are close to the expected stoichiometry. XRD patterns and Raman spectra of CZFTS powders showed that only polycrystalline CZFTS phase is present and a possible transition phase from stannite to kesterite structure had occurred by reducing Fe content. Using XRD data, the crystal parameters of CZFTS powders were estimated. Structural properties of CZFTS thin films indicate an enhancement of crystallinity after annealing. Some microstructural parameters of the prepared films were evaluated. However, morphological analysis of CZFTS crystals showed compact surfaces. Also, micrographs of CZFTS thin films indicate an improvement of crystallinity films followed by the increases of average roughness values after a sulfurization process. Moreover, hot probe method indicates that CZFTS ingots and prepared films exhibit an obvious p-type semiconductor.

Keywords

Cu2ZnxFe1−xSnS4 powders thin film thermal evaporation elemental composition structural properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 4, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    R.R. Prabhakar, N.H. Loc, M.H. Kumar, P.P. Boix, S. Juan, R.A. John, S.K. Batabyal, and L.H. Wong, ACS Appl. Mater. Interfaces 6, 17661 (2014).CrossRefGoogle Scholar
  3. 3.
    D.B. Khadka and J.H. Kim, J. Phys. Chem. C 118, 14227 (2014).CrossRefGoogle Scholar
  4. 4.
    Z. Xiaoyan, N. Bao, K. Ramasamy, B. Lin, and A. Gupta, 38th IEEE Photovoltaic Specialists Conference (PVSC) (2012), pp. 001967–001969.Google Scholar
  5. 5.
    Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, and S.-X. Wu, J. Phys. Chem. C 115, 19632 (2011).CrossRefGoogle Scholar
  6. 6.
    X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Chem. Commun. 47, 3141 (2011).CrossRefGoogle Scholar
  7. 7.
    S.G. Nilange, N.M. Patil, and A.A. Yadav, Physica B Condens. Matter 570, 73 (2019).CrossRefGoogle Scholar
  8. 8.
    A. Shamardina, D. Kurbatova, L. Graseb, J. Vecstaudžac, J. Kaupužsd, and A. Medvidsd, Appl. Surf. Sci. 488, 827 (2019).CrossRefGoogle Scholar
  9. 9.
    R. Yan, L. Kang, Y. Sun, and J. Zhang, RSC Adv. 8, 11469 (2018).CrossRefGoogle Scholar
  10. 10.
    C. Dong, G.Y. Ashebir, J. Qi, J. Chen, Z. Wana, W. Chen, and M. Wang, Mater. Lett. 214, 287 (2018).CrossRefGoogle Scholar
  11. 11.
    J. Zhoua, S. Yua, X. Guoa, L. Wua, and H. Lib, Curr. Appl. Phys. 19, 67 (2019).CrossRefGoogle Scholar
  12. 12.
    M. Burhanuz, Z. Rameez, A. Mirb, and R. Poollaa, Int. J. Hydrogen Energy (2019).  https://doi.org/10.1016/j.ijhydene.2019.07.026.CrossRefGoogle Scholar
  13. 13.
    Z. Shadrokh, A. Yazdani, and H. Eshghi, Semicond. Sci. Technol. 31, 12 (2016).CrossRefGoogle Scholar
  14. 14.
    W. Wang, H. Shen, J. Chen, W. Chen, and X. He, Adv. Powder Technol. 26, 275 (2015).CrossRefGoogle Scholar
  15. 15.
    G.L. Agawane, S.W. Shin, S.A. Vanalakar, A.V. Moholkar, and J.H. Kim, Mater. Lett. 137, 147 (2014).CrossRefGoogle Scholar
  16. 16.
    A. Hannachi, H. Oueslati, N. Khemiri, and M. Kanzari, Opt. Mater. 72, 702 (2017).CrossRefGoogle Scholar
  17. 17.
    C. Huang, Y. Chan, F. Liu, D. Tang, J. Yang, Y. Lai, J. Li, and Y. Liu, J. Mater. Chem. A 1, 5402 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Shibuya, Y. Goto, Y. Kamihara, M. Matoba, K. Yasuoka, L.A. Burton, and A. Walsh, Appl. Phys. Lett. 104, 021912 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Siebentritt and S. Schorr, Prog. Photovolt. Res. Appl. 20, 512 (2012).CrossRefGoogle Scholar
  20. 20.
    P. Bonazzi, L. Bindi, G.P. Bernardini, and S. Menchetti, Can. Mineral. 41, 639 (2003).CrossRefGoogle Scholar
  21. 21.
    S. Schorr, H. Hoebler, and M. Tovar, Eur. J. Mineral. 19, 1 (2007).CrossRefGoogle Scholar
  22. 22.
    C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Lib, and Y. Liua, Chem. Commun. 48, 2603 (2012).CrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (London: Addition-Wesley, 1978).Google Scholar
  24. 24.
    X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V.O. Yukhymchuk, M.Y. Valakh, A. Pérez-Rodríguez, and J.R. Morante, J. Alloys Compd. 539, 190 (2012).CrossRefGoogle Scholar
  25. 25.
    C. Rincón, M. Quintero, E. Moreno, C. Powera, E. Quintero, J.A. Henao, M.A. Macías, G.E. Delgado, R. Tovar, and M. Morocoima, Solid State Commun. 151, 947 (2011).CrossRefGoogle Scholar
  26. 26.
    M. Himmrich and H. Haeuseler, Spectrochim. Acta Part A 47, 933 (1991).CrossRefGoogle Scholar
  27. 27.
    P.A. Fernandes, P.M.P. Salomé, and A.F. da Cunha, Thin Solid Films 517, 2519 (2009).CrossRefGoogle Scholar
  28. 28.
    M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, Phys. Stat. Sol. (a) 205, 167 (2008).CrossRefGoogle Scholar
  29. 29.
    L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, T.G. Hibbert, and K.C. Molloy, Chem. Mater. 11, 1792 (1999).CrossRefGoogle Scholar
  30. 30.
    M. Steichen, R. Djemour, L. Gutay, J. Guillot, and S. Siebentritt, J. Phys. Chem. C 117, 4383 (2013).CrossRefGoogle Scholar
  31. 31.
    A. Boughriet, R.S. Figueiredo, J. Laureyns, and P.J. Recourt, J. Chem. Soc. Faraday Trans. 93, 3209 (1997).CrossRefGoogle Scholar
  32. 32.
    A. Fairbrother, E. Garcia-Hemme, V.I. Roca, X. Fontane, F.A.P. Agudelo, O.V. Galan, A. Perez-Rodriguez, and E. Saucedo, J. Am. Chem. Soc. 134, 8018 (2012).CrossRefGoogle Scholar
  33. 33.
    P.A. Fernandes, P.M.P. Solome, and A.F. Da Cunha, J. Alloys Compd. 509, 7600 (2011).CrossRefGoogle Scholar
  34. 34.
    D.M. Berg, R. Djemour, L. Gutay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, and A. Perez-Rodriguez, Appl. Phys. Lett. 100, 1921031 (2012).CrossRefGoogle Scholar
  35. 35.
    D. Balzar and S. Popovic, J. Appl. Crystallogr. 29, 16 (1996).CrossRefGoogle Scholar
  36. 36.
    V.D. Mote, Y. Purushotham, and B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012).CrossRefGoogle Scholar
  37. 37.
    G.B. Williamson and R.C. Smallman, Philos. Mag. 1, 34 (1956).CrossRefGoogle Scholar
  38. 38.
    R. Touati, M. Ben Rabeh, and M. Kanzari, Energy Procedia 44, 44 (2014).CrossRefGoogle Scholar
  39. 39.
    J. Henry, K. Mohanraj, and G. Sivakumar, J. Asian Ceram. Soc. 4, 81 (2016).CrossRefGoogle Scholar
  40. 40.
    B.E. Warren and E.P. Warekois, Acta Metall. 3, 473 (1955).CrossRefGoogle Scholar
  41. 41.
    S. Thanikaikarasan, K. Sundaram, T. Mahalingam, S. Velumani, and J.-K. Rhee, Mater. Sci. Eng. B 174, 242 (2010).CrossRefGoogle Scholar
  42. 42.
    S. Thanikaikarasan, T. Mahalingam, M. Raja, T. Kim, and Y.D. Kim, J. Mater. Sci. Mater. Electron. 20, 727 (2009).CrossRefGoogle Scholar
  43. 43.
    X. Menga, H. Deng, Q. Zhang, L. Sun, P. Yang, and J. Chu, Mater. Lett. 186, 138 (2017).CrossRefGoogle Scholar
  44. 44.
    H. Oueslati, M. Ben Rabeh, J. Martin, and M. Kanzari, Thin Solid Films 669, 633 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratoire de Photovoltaïques et Matériaux Semi-conducteurs, Ecole Nationale d’Ingénieurs de TunisUniversité de Tunis El ManarTunisTunisia
  2. 2.Laboratoire de Photovoltaïques et Matériaux Semi-conducteurs, Institut préparatoire aux études d’ingénieurs de TunisUniversité de TunisTunisTunisia

Personalised recommendations