Advertisement

Mechanism of Thermal Stress Relaxation of Non-bonded Al/Graphite laminated Roll Composite

  • Yuka YamadaEmail author
  • Daiki Matsuhata
  • Hiroshi Hohjo
  • Tadayoshi Matsumori
Article
  • 3 Downloads

Abstract

Miniaturization and high-density packaging of power modules for use in vehicles increases the amount of heat they generate. To prevent damage from heat in such packages, we designed, optimized, and fabricated a composite roll laminated with a non-bonded graphite sheet and Al foil. To find the optimal design of this material, we used finite element analysis to model a non-bonded Al/graphite laminated roll composite, using this simulation to assess how the geometry of its constituent materials influenced its thermal stress. Based on this work, we found that the larger the aspect ratio of the Al foil, the greater the deformability of the composite and the higher its stress relaxation effect. In addition, we found that sandwiching the graphite sheet between the Al foil deforms the foil into a convex shape, and that the Al/graphite laminate composite shows higher thermal stress relaxation than the Al foil does on its own.

Keywords

Thermal stress thermal conductivity composite finite element analysis power module 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    H. Lu, C. Bailey, and C. Yin, Microelectron. Reliab. 49, 1250 (2009).CrossRefGoogle Scholar
  2. 2.
    A.M. Abyzov, M.J. Kruszewski, L. Ciupinski, M. Mazurkiewicz, A. Michalski, and K.J. Kurzydlowski, Mater. Des. 76, 97 (2015).CrossRefGoogle Scholar
  3. 3.
    Q. Kang, X. He, S. Ren, T. Liu, and M. Wu, Mater. Charact. 105, 18 (2015).CrossRefGoogle Scholar
  4. 4.
    H. Bai, N. Ma, J. Lang, C. Zhu, and Y. Ma, Compos. Part B Eng. 52, 182 (2013).CrossRefGoogle Scholar
  5. 5.
    C.Y. Chung, M.T. Lee, M.Y. Tsai, C.H. Chu, and S.J. Li, Appl. Therm. Eng. 69, 208 (2014).CrossRefGoogle Scholar
  6. 6.
    R. Prieto, J.M. Molina, J. Narciso, and E. Louis, Scr. Mater. 59, 11 (2008).CrossRefGoogle Scholar
  7. 7.
    J.K. Chen and I.S. Huang, Compos. Part B Eng. 44, 698 (2013).CrossRefGoogle Scholar
  8. 8.
    H. Kurita, T. Miyazaki, A. Kawasaki, Y.F. Lu, and J.F. Silvain, Compos. Part A Appl. Sci. Manuf. 73, 125 (2015).CrossRefGoogle Scholar
  9. 9.
    P.M. Geffroy and J.F. Silvain, Mater. Sci. Forum 534–536, 1505 (2007).CrossRefGoogle Scholar
  10. 10.
    Z.F. Xu, Y.B. Choi, K. Matsugi, D.C. Li, and G. Sasaki, Mater. Trans. 51, 510 (2010).CrossRefGoogle Scholar
  11. 11.
    H.M. Zhang, X.B. He, X.H. Qu, Q. Liu, and X.Y. Shen, Rare Met. 32, 75 (2013).CrossRefGoogle Scholar
  12. 12.
    T.T. Liu, X.B. He, Q. Liu, S.B. Ren, L. Zhang, and X.H. Qu, Adv. Eng. Mater. 17, 502 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Couillaud, Y.F. Lu, and J.F. Silvain, J. Mater. Sci. 49, 5537 (2014).CrossRefGoogle Scholar
  14. 14.
    T. Matsumori, K. Atsushi, and T. Kondoh, Struct. Multidiscip. Optim. (2019).  https://doi.org/10.1007/s00158-019-02341-4.CrossRefGoogle Scholar
  15. 15.
    M.P. Bendsøe and O. Sigmund, Topology Optimization—Theory, Methods, and Applications (Berlin: Springer, 2003).Google Scholar
  16. 16.
    Y. Yamada, H. Hohjo, H. Kimura, A. Kawamoto, T. Matsumori, and T. Kondoh, Jpn. Inst. Electron. Pack. 19, 441 (2016).CrossRefGoogle Scholar
  17. 17.
    K. Tanaka, K. Suzuki, and Y. Akiniwa, Evaluation of Residual Stresses by X-Ray Diffraction: Fundamentals and Applications (Tokyo: Yokendo, 2006).Google Scholar
  18. 18.
    M. Sakai, R.C. Bradt, and D.B. Fischbach, J. Mater. Sci. 21, 1491 (1986).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Toyota Central Research and Development Laboratories, Inc.NagakuteJapan

Personalised recommendations