Advertisement

Identification of Electronic Components Susceptible to Deterioration by Atmospheric Corrosion

  • F. Sánchez PérezEmail author
  • A. Ortiz Prado
Article
  • 10 Downloads

Abstract

Electronic components are often susceptible to deterioration by environmental effects. Several studies have been reported on atmospheric corrosion of electronic devices with focus on functionality, storage capacity, and their miniaturization. However, there is a lack of studies focused on identifying the components most susceptible to atmospheric corrosion, the corrosion products generated in them, and the possible variables that have a greater impact on deterioration. The present study is focused on linking the deterioration of electronic boards with temperature and humidity cycles. This was accomplished through accelerated tests inside an atmospheric chamber, where the concentrations of pollutant gases (NO2 and SO2) are kept constant. Each trapezoidal cycle within the accelerated tests equals one day of field exposure. The results show that the NO2 and SO2 gasses reduced the life of the electronic components by 49.8%. The SO2 gas was found to be the contaminant gas that most influenced the deterioration of electronic devices. Energy-dispersive spectroscopy (EDS) show the formation of CuSO4. The development of protective coating against these pollutant gasses could improve the operation of electronic components.

Keywords

Electronic components atmospheric corrosion accelerated tests gases pollutants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    F. Sánchez and A. Ortiz, in The European Corrosion Congress (2011).Google Scholar
  2. 2.
    P. Marcus, Corrosion Mechanisms in Theory and Practice, 2nd edn (Marcel Dekker Publisher, 2002), pp. 547–580.Google Scholar
  3. 3.
    F. Sánchez, Determinación del grado de corrosividad, en materiales de equipo electrónico, por efectos ambientales (Tesis de Maestría, Instituto de Investigaciones en Materiales, UNAM, 2014), http://132.248.9.195/ptd2014/agosto/0717997/Index.html.
  4. 4.
    S. Cerrud, V.H. Jacobo, A. Ortiz, and R. Schouwenaars, Corrosión y Protección (Facultad de Ingeniería UNAM, 2003).Google Scholar
  5. 5.
    C. Arroyave and M. Morcillo, Corros. Sci. (2010).  https://doi.org/10.1016/0010-938x(94)00136-t.CrossRefGoogle Scholar
  6. 6.
    Z.Y. Chen, S. Zakipor, D. Persson, and C. Leygraf, Corros. JSE (2004).  https://doi.org/10.5006/1.3280618.CrossRefGoogle Scholar
  7. 7.
    E. García, Modificaciones al sistema de clasificación climática de Kôppen (UNAM, Instituto de Geografía, 2004).Google Scholar
  8. 8.
    NOM-022-SSA1-2010, Criterio para evaluar la calidad del aire ambiente con respecto a SO 2 (Norma Oficial Mexicana, 2010), http://www.dof.gob.mx/normasOficiales/4149/salud1/salud1.htm.
  9. 9.
    NOM-023-SSA1-1993, Criterio para evaluar la calidad del aire ambiente con respecto a NO 2 (Norma Oficial Mexicana, 1993), http://www.salud.gob.mx/unidades/cdi/nom/023ssa13.html.
  10. 10.
    M. Morcillo, E. Almeida, M. Marrocos, and B. Rosales, Corros. JSE (2001).  https://doi.org/10.5006/1.3290321.CrossRefGoogle Scholar
  11. 11.
    ISO 9223:2012, Corrosion of Metals and Alloys-Corrosivity of Atmospheres-Classification (International Standard Organization, 2012), https://www.iso.org/standard/53499.html.
  12. 12.
    A. Ortiz, V.H. Jacobo, R. Schouwenaars, and F. Sánchez, Revista Ingeniería Investigación y Tecnología (2010),  https://doi.org/10.22201/fi.25940732e.2010.11n4.037.CrossRefGoogle Scholar
  13. 13.
  14. 14.

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Materials and Manufacturing Department, Faculty of Engineering, Research and Technical Assistance Unit in Materials, UDIATEMUNAMCiudad de MéxicoMexico

Personalised recommendations