Advertisement

A Simple and Rapid Method to Produce SERS Substrates Using Au Nanoparticles Prepared by Laser Ablation and DVD Template

  • The Binh NguyenEmail author
  • Nhu Anh Nguyen
  • Gia Long Ngo
Article
  • 5 Downloads

Abstract

Simple and highly sensitive SERS substrates were produced using Au nanoparticles (AuNPs) prepared by laser ablation in water and available Digital Video Discs (DVDs). We used the simple “drop-cast’’ method to deposit AuNPs on the grating pattern surface of a DVD in place of the other methods such as electrochemical deposition, electrophoretic deposition and sputtering method which require some more equipment. AuNPs were proposed to be synthesized in water by laser ablation to form a nearly circular AuNP stain of small size on a DVD surface. The protecting polycarbonate layer of a DVD was removed from the DVD surface. The bare metallic DVD surface was rinsed carefully with ethanol and distilled water. The width of tracks on a DVD surface is around 300 nm and distance between them is around 450 nm. We prepared AuNPs by pulsed laser ablation of a gold piece in distilled water. The colloidal gold nanoparticles were deposited on DVD templates. We studied to produce an effective layer of AuNPs on DVD template for SERS substrates (AuNPs/DVD). The average SERS enhancement factor of the AuNPs/DVD SERS substrates is about 106. The SERS substrates can detect SERS spectra of Malachite Green and Amoxicillin at low concentrations of around 0.1–1 ppm.

Keywords

Surface enhanced Raman scattering (SERS) laser ablation digital video disc (DVD) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research work is supported by the Project ĐTĐLCN-01/18 of University of Science—VNU Hanoi.

References

  1. 1.
    P. Strobbia, E. Languirand, and B.M. Cullum, Opt. Eng. 54, 100902 (2015).CrossRefGoogle Scholar
  2. 2.
    J.R. Lombardi and R.L. Birke, Acc. Chem. Res. (2009).  https://doi.org/10.1021/ar800249y.CrossRefGoogle Scholar
  3. 3.
    W.E. Smith, Chem. Soc. Rev. 37, 955 (2008).CrossRefGoogle Scholar
  4. 4.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, and R.P. Van Duyne, Nat. Mater. 7, 442 (2008).CrossRefGoogle Scholar
  5. 5.
    Y.S. Huh, A.J. Chung, and D. Erickson, Microfluid. Nanofluid. 6, 285 (2009).CrossRefGoogle Scholar
  6. 6.
    D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, Anal. Bioanal. Chem. 403, 27 (2012).  https://doi.org/10.1007/s00216-011-5631-x.CrossRefGoogle Scholar
  7. 7.
    C.L. Haynes, A.D. McFarland, and R.P.V. Duyne, Anal. Chem. 77, 338A (2005).CrossRefGoogle Scholar
  8. 8.
    H. Lin, J. Mock, D. Smith, T. Gao, and M.J. Sailor, J. Phys. Chem. B 108, 11654 (2004).CrossRefGoogle Scholar
  9. 9.
    C. Fang, A. Agarwal, H. Ji, W.Y. Karen, and L. Yobas, Nanotechnology 20, 405604 (2009).CrossRefGoogle Scholar
  10. 10.
    X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, and Z.Q. Tian, Anal BioanalChem 394, 1729 (2009).  https://doi.org/10.1007/s00216-009-2761-5.CrossRefGoogle Scholar
  11. 11.
    R.J.C. Brown and M.J.T. Milton, J. Raman Spectrosc. 39, 1313 (2008).CrossRefGoogle Scholar
  12. 12.
    M.J. Banholzer, J.E. Millstone, L. Qin, and C.A. Mirkin, Chem. Soc. Rev. 37, 885 (2008).CrossRefGoogle Scholar
  13. 13.
    N. Marquestaut, A. Martin, D. Talaga, L. Servant, S. Ravaine, S. Reculusa, D.M. Bassani, E. Gillies, and F. Lagugné-Labarthet, Langmuir 24, 11313 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Mohapatra, S. Siddhanta, D.R. Kumar, C. Narayana, and T.K. Maji, Eur J InorgChem 31, 4969 (2010).CrossRefGoogle Scholar
  15. 15.
    W.B. Li, Y.Y. Guo, and P. Zhang, J. Phys. Chem. C 114, 6413 (2010).  https://doi.org/10.1021/jp100526v.CrossRefGoogle Scholar
  16. 16.
    M. Erol, Y. Han, S.K. Stanley, C.M. Stafford, H. Du, and S. Sukhishvili, J. Am. Chem. Soc. 131, 7480 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Jana, S. Pande, A.K. Sinha, S. Sarkar, M. Pradhan, M. Basu, S. Saha, and T. Pal, J. Phys. Chem. C 113, 1386 (2009).CrossRefGoogle Scholar
  18. 18.
    B.K. Jena and C.R. Raj, Chem. Mater. 20, 3546 (2008).CrossRefGoogle Scholar
  19. 19.
    P.F. Liao and A. Wokaun, J. Chem. Phys. 76, 751 (1982).CrossRefGoogle Scholar
  20. 20.
    F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Futamata, Y.Y. Yu, and T. Yajima, J. Phys. Chem. C 115, 5271 (2011).CrossRefGoogle Scholar
  22. 22.
    G. Giallongo, R. Pilot, C. Durante, and G. Granozzi, Plasmonics 6, 725 (2011).CrossRefGoogle Scholar
  23. 23.
    C. Leordean, B. Marta, A.-M. Gabudean, M. Focsan, I. Botiz, and S. Astilean, Appl. Surf. Sci. 349, 190 (2015).CrossRefGoogle Scholar
  24. 24.
    A.I. Radu, Y.Y. Ussembayev, M. Jahn, U.S. Schubert, and K. Weber, RSC Adv. 6, 44163 (2016).CrossRefGoogle Scholar
  25. 25.
    M.K. Nieuwoudt, J.W. Martin, R.N. Oosterbeek, N.I. Novikova, X. Wang, J. Malmström, D.E. William, and M.C. Simpson, Anal. Bioanal. Chem. 408, 4403 (2016).CrossRefGoogle Scholar
  26. 26.
    T.B. Nguyen, et al., Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 025016 (2012).CrossRefGoogle Scholar
  27. 27.
    A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
  28. 28.
    J. Hong, M.K. Park, E.J. Lee, D.E. Lee, D.S. Hwang, and S. Ryu, Sci. Rep. 3, 2700 (2013).  https://doi.org/10.1038/s02700.CrossRefGoogle Scholar
  29. 29.
    K. Sivashanmugan, J.D. Liao, B.H. Liu, C.-K. Yao, and S.-C. Luo, Sens. Actuators, B 207, 430 (2015).CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, W. Yu, L. Pei, K. Lai, B.A. Rasco, and Y. Huang, Food Chem. 169, 80 (2015).CrossRefGoogle Scholar
  31. 31.
    Q. Cen, Y. He, M. Xu, J. Wang, and Z. Wang, J. Chem. Phys. 142, 114201 (2015).CrossRefGoogle Scholar
  32. 32.
    P. Kumar, R. Khosla, M. Soni, D. Deva, and S.K. Sharma, Sens. Actuators, B 246, 477 (2017).CrossRefGoogle Scholar
  33. 33.
    S. Schlücker, Angew. Chem. Int. Ed. 53, 2 (2014).CrossRefGoogle Scholar
  34. 34.
    C.X. Fang, J.H. Li, and Y.Z. Liang, J. Instrum. Anal. 31, 541 (2011).Google Scholar
  35. 35.
    X. Li and Y. Lu, J. Beijing Inf. Sci. Technol. Univ. 28, 27 (2013).Google Scholar
  36. 36.
    A. Calborean, D. Maniu, V. Chis, T. Iliescu, and V.K. Rastogi, J. Optoelectron. Adv. Mater. 9, 680 (2007).Google Scholar
  37. 37.
    A. Bebu, L. Szabo, N. Leopold, and L. David, J. Mol. Struct. 993, 52 (2011).CrossRefGoogle Scholar
  38. 38.
    Wei Ji, Li Wang, He Qian, and Weirong Yao, Spectrosc. Lett. 47, 451 (2014).CrossRefGoogle Scholar
  39. 39.
    E.C. Le Ru, E. Blackie, M. Mayer, and P.G. Etchegoin, J. Phys. Chem. 111, 13794 (2007).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, University of ScienceVNU-HanoiHanoiVietnam

Personalised recommendations