Advertisement

Decomposed Copper(II) Acetate Over Expanded Graphite (EG) as Hybrid Filler to Fabricate Epoxy Based Thermal Interface Materials (TIMs)

  • Sagar Kumar NayakEmail author
  • Smita Mohanty
  • Sanjay K. Nayak
TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 1 Downloads
Part of the following topical collections:
  1. TMS2019 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

In this investigation, the fabrication of thermal conductive epoxy composite with the assimilation of synthesized expanded graphite (EG) decorated with copper compound nanoparticles [copper (Cu), copper(II) oxide (CuO) and copper(I) oxide (Cu2O) nanoparticles], has been reported wherein, Cu-compound was attached to EG surface by solid-state pyrolysis of copper(II) acetate (CA) monohydrate. The prepared hybrid filler was characterized by an x-ray diffraction technique and the Cu-compound nanoparticles size was 40.8 ± 17.67 nm. The microstructure and morphology of the distributed Cu-compound nanoparticles over the EG surface were characterized by transmission electron microscopy (TEM) and scanning electron microscopy. The Cu-compound nanoparticles decorated EG hybrid filler at 10 wt.% loading ((EG-CA (4)/Ep)10) demonstrated the thermal conductivity (TC) which is 11.8 times higher than the neat epoxy due to the formation 3D percolation heat-conducting networks. Further, decoration of Cu-compound on the EG surface resulted in higher TC as measured using a guarded heat flow meter technique. Lap shear strength of (EG-CA (4)/Ep)10 composite was tuned to 5.93 ± 0.27 MPa as characterized by a universal testing machine. The porosity of fabricated composites was decreased as Cu-compound attachment increases on the EG substrate. The thermo-gravimetric analysis revealed enhanced thermal stability of (EG-CA (4)/Ep)10 composite to 407°C at 50% weight loss consideration. The electrical resistivity of the composite was reduced with the addition of the EG filler system as confirmed from the super megaohmmeter.

Keywords

Hybrid composites thermal conductivity (TC) expanded graphite (EG) copper compound nanoparticles epoxy matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    S.K. Nayak, S. Mohanty, and S.K. Nayak, SN Appl. Sci. 1, 337 (2019).CrossRefGoogle Scholar
  2. 2.
    M. Li, Y. Wan, Z. Gao, G. Xiong, X. Wang, C. Wan, and H. Luo, Mater. Des. 51, 257 (2013).CrossRefGoogle Scholar
  3. 3.
    T.L. Li and S.L.C. Hsu, J. Phy. Chem. B 114, 6825 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Ponce, A.J. Martínez, J. Correa, M. Cotorogea, and J. Arau, IEEE Trans Power Electr. 21, 532 (2006).CrossRefGoogle Scholar
  5. 5.
    F. Sarvar and D.C. Whalley, J. Electron. Manuf. 9, 269 (1999).CrossRefGoogle Scholar
  6. 6.
    A.E. Bergles, IEEE Trans. Compon Packag Manuf Technol 26, 6 (2003).CrossRefGoogle Scholar
  7. 7.
    C.C. Teng, C.C.M. Ma, C.H. Lu, S.Y. Yang, S.H. Lee, M.C. Hsiao, M.Y. Yen, K.C. Chiou, and T.M. Lee, Carbon 49, 5107 (2011).CrossRefGoogle Scholar
  8. 8.
    W. Cui, F. Du, J. Zhao, W. Zhang, Y. Yang, X. Xie, and Y.W. Mai, Carbon 49, 495 (2011).CrossRefGoogle Scholar
  9. 9.
    S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B.S. Kong, K.W. Paik, and S. Jeon, Adv. Mater. 25, 732 (2013).CrossRefGoogle Scholar
  10. 10.
    S.Y. Mun, H.M. Lim, and D.J. Lee, Thermochim. Acta 619, 16 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Choi, K. Kim, J. Nam, and S.E. Shim, Carbon 60, 254 (2013).CrossRefGoogle Scholar
  12. 12.
    T.C. Mokhena, Mochane Mokhena, M.J. Mochane, J.S. Sefadi, S.V. Motloung, and D.M. Andala, Impact Therm. Conduct. Energy Technol. 6, 181 (2018).Google Scholar
  13. 13.
    C.P. Wong and R.S. Bollampally, J. Appl. Polym. Sci. 74, 3396 (1999).CrossRefGoogle Scholar
  14. 14.
    L.E. Nielsen, J. Appl. Polym. Sci. 17, 3819 (1973).CrossRefGoogle Scholar
  15. 15.
    Y.P. Mamunya, V.V. Davydenko, P. Pissis, and E.V. Lebedev, Eur. Polym. J. 38, 1887 (2002).CrossRefGoogle Scholar
  16. 16.
    H. Yu, L. Li, and Y. Zhang, Scr. Mater. 66, 931 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Lin, K.A. Watson, M.J. Fallbach, S. Ghose, J.G. Smith Jr, D.M. Delozier, W. Cao, R.E. Crooks, and J.W. Connell, ACS Nano 3, 871 (2009).CrossRefGoogle Scholar
  18. 18.
    L.T. Drzal and H. Fukushima, Polym. Prepr. (USA) 42, 42 (2001).Google Scholar
  19. 19.
    V. Sridhar, J.H. Jeon, and I.K. Oh, Carbon 48, 2953 (2010).CrossRefGoogle Scholar
  20. 20.
    X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Small 7, 1876 (2011).CrossRefGoogle Scholar
  21. 21.
    Z. Wang, R. Qi, J. Wang, and S. Qi, Ceram. Int. 41, 13541 (2015).CrossRefGoogle Scholar
  22. 22.
    P.A. Khomyakov, G. Giovannetti, P.C. Rusu, G.V. Brocks, J. Van den Brink, and P.J. Kelly, Phys. Rev. B 79, 195425 (2009).CrossRefGoogle Scholar
  23. 23.
    Q.J. Wang and J.G. Che, Phys. Rev. Lett. 103, 066802 (2009).CrossRefGoogle Scholar
  24. 24.
    Z. Lin, D. Han, and S. Li, J. Therm. Anal. Calorim. 107, 471 (2012).CrossRefGoogle Scholar
  25. 25.
    M. Afzal, P. Butt, and H. Ahmad, J. Therm. Anal. Calorim. 37, 1015 (1991).CrossRefGoogle Scholar
  26. 26.
    S.A.A. Mansour, J. Therm. Anal. Calorim. 46, 263 (1996).CrossRefGoogle Scholar
  27. 27.
    K. Zhang, J. Hong, G. Cao, D. Zhan, Y. Tao, and C. Cong, Thermochim. Acta 437, 145 (2005).CrossRefGoogle Scholar
  28. 28.
    E. Neubauer, G. Korb, C. Eisenmenger-Sittner, H. Bangert, S. Chotikaprakhan, D. Dietzel, A.M. Mansanares, and B.K. Bein, Thin Solid Films 433, 160 (2003).CrossRefGoogle Scholar
  29. 29.
    X.Y. Yan, X.L. Tong, Y.F. Zhang, X.D. Han, Y.Y. Wang, G.Q. Jin, Y. Qin, and X.Y. Guo, Chem. Commun. 48, 1892 (2012).CrossRefGoogle Scholar
  30. 30.
    M. d’Halluin, T. Mabit, N. Fairley, V. Fernandez, M.B. Gawande, E. Le Grognec, and F.X. Felpin, Carbon 93, 974 (2015).CrossRefGoogle Scholar
  31. 31.
    L. Chen, P. Zhao, H. Xie, and W. Yu, Compos. Sci. Technol. 125, 17 (2016).CrossRefGoogle Scholar
  32. 32.
    M. Liu, M.C. Lin, and C. Wang, Nanoscale Res. Lett. 6, 297 (2011).CrossRefGoogle Scholar
  33. 33.
    S.Y. Mun, H.M. Lim, and S.H. Lee, Mater. Res. Bull. 97, 19 (2018).CrossRefGoogle Scholar
  34. 34.
    E.T. Swartz and R.O. Pohl, Appl. Phys. Lett. 51, 2200 (1987).CrossRefGoogle Scholar
  35. 35.
    A. Malas, C.K. Das, A. Das, and G. Heinrich, Mater. Des. 39, 410 (2012).CrossRefGoogle Scholar
  36. 36.
    B. Debelak and K. Lafdi, Carbon 45, 1727 (2007).CrossRefGoogle Scholar
  37. 37.
    M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, and M.M. ulHasan, Ann. Microbiol. 60, 75 (2010).CrossRefGoogle Scholar
  38. 38.
    T.T. Baby, S.J. Aravind, T. Arockiadoss, R.B. Rakhi, and S. Ramaprabhu, Sens. Actuat. B Chem. 145, 71 (2010).CrossRefGoogle Scholar
  39. 39.
    I.V. Lightcap, T.H. Kosel, and P.V. Kamat, Nano Lett. 10, 577 (2010).CrossRefGoogle Scholar
  40. 40.
    S.E. Gwaily, G.M. Nasr, M.M. Badawy, and H.H. Hassan, Polym. Degrad. Stabil. 47, 391 (1995).CrossRefGoogle Scholar
  41. 41.
    K.M. Shahil and A.A. Balandin, Nano Lett. 12, 861 (2012).CrossRefGoogle Scholar
  42. 42.
    R. Kumar, S. Mohanty, S.K. Nayak, and S.N. Appl, Sci. 1, 180 (2019).Google Scholar
  43. 43.
    A.A. Balandin, Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
  44. 44.
    M.T. Pettes, H. Ji, R.S. Ruoff, and L. Shi, Nano Lett. 12, 2959 (2012).CrossRefGoogle Scholar
  45. 45.
    H. Fang, Y. Zhao, Y. Zhang, Y. Ren, and S.L. Bai, ACS Appl. Mater. Interfaces  9, 26447 (2017).CrossRefGoogle Scholar
  46. 46.
    H. Fang, X. Zhang, Y. Zhao, and S.L. Bai, Compos. Sci. Technol. 152, 243 (2017).CrossRefGoogle Scholar
  47. 47.
    H.S. Kim, H.S. Bae, J. Yu, and S.Y. Kim, Sci. Rep. 6, 26825 (2016).CrossRefGoogle Scholar
  48. 48.
    H. Jung, S. Yu, N.S. Bae, S.M. Cho, R.H. Kim, S.H. Cho, I. Hwang, B. Jeong, J. Hwang, and S.M. Hong, ACS Appl. Mater. Interfaces 7, 15256 (2015).CrossRefGoogle Scholar
  49. 49.
    P.K. Ghosh, S. Halder, M.S. Goyat, and G. Karthik, J. Adhes. 89, 55 (2013).CrossRefGoogle Scholar
  50. 50.
    R. Kumar, S.K. Nayak, S. Sahoo, B.P. Panda, S. Mohanty, and S.K. Nayak, J. Mater. Sci. Mater. El. 29, 16932 (2018).CrossRefGoogle Scholar
  51. 51.
    R. Sun, H. Yao, H.B. Zhang, Y. Li, Y.W. Mai, and Z.Z. Yu, Compos. Sci. Technol. 137, 16 (2016).CrossRefGoogle Scholar
  52. 52.
    R. Aradhana, S. Mohanty, and S.K. Nayak, Compos. Sci. Technol. 169, 86 (2019).CrossRefGoogle Scholar
  53. 53.
    A.G. Evans, Philos. Mag. 26, 1327 (1972).CrossRefGoogle Scholar
  54. 54.
    D.J. Green, P.S. Nicholson, and J.D. Embury, J. Mater. Sci. 14, 1413 (1979).CrossRefGoogle Scholar
  55. 55.
    P.K. Ghosh and M. Balaram, Trans. Indian Inst. Metals 58, 115 (2005).Google Scholar
  56. 56.
    Y. Hwang, M. Kim, and J. Kim, Chem. Eng. Trans. 246, 229 (2014).CrossRefGoogle Scholar
  57. 57.
    S.L. Chung and J.S. Lin, Molecules 21, 670 (2016).CrossRefGoogle Scholar
  58. 58.
    I.M. Afanasov, D.V. Savchenko, S.G. Ionov, D.A. Rusakov, A.N. Seleznev, and V.V. Avdeev, Inorg. Mater. 45, 486 (2009).CrossRefGoogle Scholar
  59. 59.
    S. Ibrahim and M.R. Johan, Int J ElectrochemSci 7, 2596 (2012).Google Scholar
  60. 60.
    L. Melnyk, Technol. Audit Prod. Reserv. 3, 28 (2017).CrossRefGoogle Scholar
  61. 61.
    A.A. Ogwu, T.H. Darma, and E. Bouquerel, J. Achiev. Mater. Manuf. Eng. 24, 172 (2007).Google Scholar
  62. 62.
    R. Padiyath, J. Seth, and S.V. Babu, Thin Solid Films 239, 8 (1994).CrossRefGoogle Scholar
  63. 63.
    V.F. Drobny and L. Pulfrey, Thin Solid Films 61, 89 (1979).CrossRefGoogle Scholar
  64. 64.
    A. Yasmin, J.J. Luo, and I.M. Daniel, Compos Sci Technol 66, 1182 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.SARP-Laboratory for Advanced Research in Polymeric MaterialsCentral Institute of Plastics Engineering and TechnologyBhubaneswarIndia

Personalised recommendations