Advertisement

The Plate-Like Hexagonal Ni-Fe-Sr Layered Double Hydroxides as Advanced Electrodes for Electrochemical Energy Storage

  • Yunpeng Jiao
  • Yinghui HanEmail author
  • Yiheng Pang
  • Junxiu Zhou
  • Xiaohan Qi
  • Yunpeng Liu
Article
  • 2 Downloads

Abstract

Some kinds of the plate-like hexagonal layered double complex hydroxides (named Ni-Fe-Sr-LDHs) materials were prepared for energy storage electrodes in this work. It showed good properties with energy densities and cycle life through the electrochemical tests. At 1 A g−1 current density, the specific capacitance of the electrode reached 311.02 F g−1 when the electrolyte was 6 M LiOH. In the long cycle test, the capacitance retention of the electrode maintained at 73.16% after 2000 cycles (current density: 1 A g−1). The morphologies of Ni-Fe-Sr-LDHs were characterized via the scanning electron microscope, transmission electron microscopy and x-ray powder diffraction. The prepared layered double hydroxides were further optimized by doping carbon nanotubes (CNTs). The optimal weight ratio of Ni-Fe-Sr-LDHs to CNTs was 3:1. The specific capacitance in the measurement of galvanostatic charge–discharge increased to 438.74 F g−1, and the stability of long-term cycling was raised to 77.45%. These results indicated that Ni-Fe-Sr-LDHs combined with CNTs would be an ideal electrode material for practical energy storage.

Graphic Abstract

Keywords

Energy storage electrode material electrochemical layered double hydroxide optimization 

Abbreviations

A g−1

Current density

cm2

Squared centimeter

CNTs

Carbon nanotubes

CV

Cyclic voltammetry

EIS

Electrochemical impedance spectroscopy

F g−1

Average specific capacitance

GCD

Galvanostatic charge–discharge

Hz

Hertz

LDHs

Layered double hydroxides

LiOH

Lithium hydroxide

M

Molar

Mg

Milligram

Mm

Millimeter

MPa

Megapascal

mV s−1

Cyclic voltammogram

nm

Nanometer

Rct

Transfer resistances

V

Volts

SCE

Saturated calomel electrode

SEM

Scanning electron microscope

TEM

Transmission electron microscope

XRD

X-ray diffraction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the National Key R&D Plan (No. 2017YFC0210202-1) and the Fundamental Research Funds for the Central Universities of China (No. 2015ZZD3).

References

  1. 1.
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C 113, 13103 (2009).CrossRefGoogle Scholar
  2. 2.
    L. Song, Y. Han, F. Guo, Y. Jiao, Y. Li, Y. Liu, and F. Gao, J. NanoMater. 9813203, 13 (2018).Google Scholar
  3. 3.
    Y. Han, L. Li, Y. Liu, X. Li, X. Qi, and L. Song, J. NanoMater. 5078473, 10 (2018).Google Scholar
  4. 4.
    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
  5. 5.
    O. Clause, M. Gazzano, F. Trifiro, A. Vaccari, and L. Zatorski, Appl. Catal. 73, 217 (1991).CrossRefGoogle Scholar
  6. 6.
    R.J. Ruano-Casero, M.E. Perez-Bernal, and V. Rives, Zeitschrift Für Anorg. Und Allg Chemie 631, 2142 (2005).CrossRefGoogle Scholar
  7. 7.
    M.Q. Zhao, Z. Qiang, J.Q. Huang, and W. Fei, Adv. Funct. Mater. 22, 675 (2012).CrossRefGoogle Scholar
  8. 8.
    C.J. Raj, M. Rajesh, R. Manikandan, J. Yong, K. Hyun, S. Yeup, J. Ho, and B. Chul, Electrochim. Acta 247, 949 (2017).CrossRefGoogle Scholar
  9. 9.
    Y. Zhang and S. Wei, J. Nanoparticle Res. 21, 14 (2019).CrossRefGoogle Scholar
  10. 10.
    S.B. Kulkarni, A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, S.S. Joshi, and C.D. Lokhande, Int. J. Hydrog Energy 38, 4046 (2013).CrossRefGoogle Scholar
  11. 11.
    L. Zhang, K.N. Hui, K. San Hui, and H. Lee, J. Power Sour. 318, 76 (2016).CrossRefGoogle Scholar
  12. 12.
    A.D. Jagadale, G. Guan, X. Li, X. Du, X. Ma, X. Hao, and A. Abudula, J. Power Sour. 306, 526 (2016).CrossRefGoogle Scholar
  13. 13.
    J. Sun, W. Wang, and D. Yu, J. Electron. Mater. 48, 3833 (2019).CrossRefGoogle Scholar
  14. 14.
    H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei, and J. Feng, J. Power Sour. 378, 248 (2018).CrossRefGoogle Scholar
  15. 15.
    X. Li, H. Wu, C. Guan, A.M. Elshahawy, Y. Dong, S.J. Pennycook, and J. Wang, Small 15, 1803895 (2019).Google Scholar
  16. 16.
    X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook, C. Guan, and J. Wang, Adv. Funct. Mater. 28, 1800036 (2018).CrossRefGoogle Scholar
  17. 17.
    M.J. Deng, J.K. Chang, C.C. Wang, K.W. Chen, C.M. Lin, M.T. Tang, J.M. Chen, and K.T. Lu, Energy Environ. Sci. 4, 3942 (2011).CrossRefGoogle Scholar
  18. 18.
    L. Jiang, J. Yan, L. Hao, R. Xue, G. Sun, and B. Yi, Carbon 56, 146 (2013).CrossRefGoogle Scholar
  19. 19.
    H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, and Q. Xu, J. Am. Chem. Soc. 133, 11854 (2011).CrossRefGoogle Scholar
  20. 20.
    H. Li, L. Mcrae, C.J. Firby, M. Al-Hussein, and A.Y. Elezzabi, Nano Energy 47, 130 (2018).CrossRefGoogle Scholar
  21. 21.
    L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, and X. Xu, Nat. Commun. 4, 2923 (2013).CrossRefGoogle Scholar
  22. 22.
    X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, and M. Liu, Nano Energy 11, 154 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Shanmugavadivel, V.V. Dhayabaran, and M. Subramanian, Mater. Lett. 181, 335 (2016).CrossRefGoogle Scholar
  24. 24.
    Y. Zou, Q. Wang, C. Xiang, Z. She, H. Chu, S. Qiu, F. Xu, S. Liu, C. Tang, and L. Sun, Electrochim. Acta 188, 126 (2016).CrossRefGoogle Scholar
  25. 25.
    Y. Cao, B. Lin, Y. Sun, H. Yang, and X. Zhang, Electrochim. Acta 174, 41 (2015).CrossRefGoogle Scholar
  26. 26.
    T. Xiao, S. Wang, J. Li, N. Yang, W. Li, P. Xiang, L. Jiang, and X. Tan, J. Alloys Compd. 768, 635 (2018).CrossRefGoogle Scholar
  27. 27.
    S. Sanati and Z. Rezvani, Ultrason. Sonochem. 48, 199 (2018).CrossRefGoogle Scholar
  28. 28.
    L. Liu, X. Hu, H.Y. Zeng, M.Y. Yi, S.G. Shen, S. Xu, X. Cao, and J.Z. Du, J. Mater. Sci. Technol. 35, 1691 (2019).CrossRefGoogle Scholar
  29. 29.
    X. Xu, H. Chu, Z. Zhang, P. Dong, R. Baines, P.M. Ajayan, J. Shen, and M. Ye, ACS Appl. Mater. Interfaces. (2017).  https://doi.org/10.1021/acsami.7b09866 CrossRefGoogle Scholar
  30. 30.
    S.G. Mohamed, S.Y. Attia, and H.H. Hassan, Microporous Mesoporous Mater. 251, 26 (2017).CrossRefGoogle Scholar
  31. 31.
    L. Li, R. Li, S. Gai, F. He, and P. Yang, J. Mater. Chem. A 2, 8758 (2014).CrossRefGoogle Scholar
  32. 32.
    Z.-A. Hu, Y.-L. Xie, Y.-X. Wang, H.-Y. Wu, Y.-Y. Yang, and Z.-Y. Zhang, Electrochim. Acta 54, 2737 (2009).CrossRefGoogle Scholar
  33. 33.
    S. Huang, G.-N. Zhu, C. Zhang, W.W. Tjiu, Y.-Y. Xia, and T. Liu, ACS Appl. Mater. Interfaces 4, 2242 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yunpeng Jiao
    • 1
  • Yinghui Han
    • 1
    • 2
    Email author
  • Yiheng Pang
    • 3
  • Junxiu Zhou
    • 1
  • Xiaohan Qi
    • 2
  • Yunpeng Liu
    • 2
  1. 1.Department of Mathematics and PhysicsNorth China Electric Power UniversityBaodingChina
  2. 2.Hebei Key Laboratory of Distributed Energy Storage and Micro-gridNorth China Electric Power UniversityBaodingChina
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations