Advertisement

Preparation and Characterization of Ni/Bi0.5Sb1.5Te3 Heterogeneous Multilayered Thermoelectric Materials

  • Xinge Guo
  • Wanting ZhuEmail author
  • Lin Xing
  • Xin Mu
  • Cuncheng Li
  • Shifang Ma
  • Ping Wei
  • Xiaolei Nie
  • Qingjie Zhang
  • Wenyu ZhaoEmail author
Topical Collection: International Conference on Thermoelectrics 2019
  • 15 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2019

Abstract

It is difficult to achieve coordinated optimization in thermoelectric materials due to the strong coupling between the electrical and thermal transport properties. However, interface effects, especially those caused by heterogeneous interfaces, are promising to overcome this challenge. In this work, the Ni/Bi0.5Sb1.5Te3 (BST) heterogeneous multilayer structure thermoelectric materials were fabricated by the combination of vacuum evaporation deposition and spark plasma sintering. The influence of Ni layer on the phase composition, microstructure and thermoelectric performance along the different directions (0°, 30°, 60° and 90°, the angles between the performance measurement direction and the Ni layer) of Ni/BST materials were systematically investigated. The microstructural analysis indicates that the distinct heterogeneous interfaces were firmly bonded, and the interface reaction layer was composed of Ni and Te. As compared with the matrix, the electrical conductivity and Seebeck coefficient of the Ni/BST heterogeneous multilayer thermoelectric materials increased, and the thermal conductivity slightly reduced. For Ni/BST90° sample, the maximum ZT value of 1.05 was achieved at 370 K, increased by 19.1% compared with the BST90°. Our work demonstrates that the electron and phonon transport properties can be simultaneously optimized by introducing the ordered heterogeneous interfaces.

Keywords

Ni Bi0.5Sb1.5Te3 multilayered  heterogeneous interface 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11834012, 51620105014, 51572210, 51521001) and the National Key R&D Program of China (Grant No. 2018YFB0703603).

Conflict of interest

The authors declared that they have no conflicts of interest.

References

  1. 1.
    L.E. Bell, Science 321, 1457–1461 (2008).CrossRefGoogle Scholar
  2. 2.
    F.J. Disalvo, Science 285, 703–706 (1999).CrossRefGoogle Scholar
  3. 3.
    S. Sharma, V.K. Dwivedi, and S.N. Pandit, Int. J. Green Energy 11, 899–909 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Jonson and G.D. Mahan, Phy. Rev. B 21, 4223–4229 (1980).CrossRefGoogle Scholar
  5. 5.
    Z. Chen, X. Zhang, and Y. Pei, Adv. Mater. 30, 1–16 (2018).Google Scholar
  6. 6.
    J.P. Heremans, Nat. Phys. 11, 990–991 (2015).CrossRefGoogle Scholar
  7. 7.
    S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, and G. Chen, Nat. Commun. 5, 1–8 (2014).Google Scholar
  8. 8.
    K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414–418 (2012).CrossRefGoogle Scholar
  9. 9.
    Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66–69 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125–6135 (2012).CrossRefGoogle Scholar
  11. 11.
    L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Science 351, 141–144 (2016).CrossRefGoogle Scholar
  12. 12.
    W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, and X. Tang, J. Am. Chem. Soc. 131, 3713–3720 (2009).CrossRefGoogle Scholar
  13. 13.
    W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, and J. Shi, Nature 549, 247–251 (2017).CrossRefGoogle Scholar
  14. 14.
    T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, and X. Zhao, Adv. Mater. 29, 1–26 (2017).Google Scholar
  15. 15.
    S. Nakajima, J. Phys. Chem. Solids 24, 479–485 (1962).CrossRefGoogle Scholar
  16. 16.
    M.C.T. Caillat, P. Pierrat, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 53, 1121–1129 (1992).CrossRefGoogle Scholar
  17. 17.
    J.J. Shen, L.P. Hu, T.J. Zhu, and X.B. Zhao, Appl. Phys. Lett. 99, 1–3 (2011).Google Scholar
  18. 18.
    W. Xie, J. He, S. Zhu, T. Holgate, S. Wang, X. Tang, Q. Zhang, and T.M. Tritt, J. Mater. Res. 26, 1791–1799 (2011).CrossRefGoogle Scholar
  19. 19.
    D. Liu, X. Li, P.M. Borlido, S. Botti, R. Schmechel, and M. Rettenmayr, Sci. Rep. 7, 1–13 (2017).CrossRefGoogle Scholar
  20. 20.
    P.J. Taylor, J.R. Maddux, W.A. Jesser, and F.D. Rosi, J. Appl. Phys. 85, 7807–7813 (1999).CrossRefGoogle Scholar
  21. 21.
    D. Li, X.Y. Qin, J. Zhang, C.J. Song, Y.F. Liu, L. Wang, H.X. Xin, and Z.M. Wang, RSC Advances 5, 43717–43722 (2015).CrossRefGoogle Scholar
  22. 22.
    D. Kenfaui, B. Lenoir, D. Chateigner, B. Ouladdiaf, M. Gomina, and J.G. Noudem, J. Eur. Ceram. Soc. 32, 2405–2414 (2012).CrossRefGoogle Scholar
  23. 23.
    D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226–235 (2009).CrossRefGoogle Scholar
  24. 24.
    Y. Yang, S.H. Xie, F.Y. Ma, and J.Y. Li, J. Appl. Phys. 111, 1–7 (2012).Google Scholar
  25. 25.
    S. Li, X. Liu, Y. Liu, F. Liu, J. Luo, and F. Pan, Nano Energy 39, 297–305 (2017).CrossRefGoogle Scholar
  26. 26.
    Y.C. Tseng, H. Lee, N.Y. Hau, S.P. Feng, and C.M. Chen, J. Electron. Mater. 47, 27–34 (2017).CrossRefGoogle Scholar
  27. 27.
    W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, J. Mater. Chem. A 1, 13093–13100 (2013).CrossRefGoogle Scholar
  28. 28.
    W.P. Lin, D.E. Wesolowski, and C.C. Lee, J. Mater. Sci.: Mater. Electron. 22, 1313–1320 (2011).Google Scholar
  29. 29.
    W.H. Chao, Y.R. Chen, S.C. Tseng, P.H. Yang, R.J. Wu, and J.Y. Hwang, Thin Solid Films 570, 172–177 (2014).CrossRefGoogle Scholar
  30. 30.
    Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 92, 1–3 (2008).Google Scholar
  31. 31.
    Y.P. Yadava and R.A. Singh, J. Mater. Sci. Lett. 4, 1421–1424 (1985).CrossRefGoogle Scholar
  32. 32.
    R.A. Howe, J.E. Enderby, and R.J. Newport, J. Phys. C: Solid State Phys. 15, 4635–4640 (1981).Google Scholar
  33. 33.
    T.A. By, R.J. Bither, W.H. Bouchard, P. Cloud, C. Dokohue, and A.W.J. Siemoks, Inorg. Chem. 7, 2208–2220 (1968).CrossRefGoogle Scholar
  34. 34.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Materials 3, 1–5 (2015).CrossRefGoogle Scholar
  35. 35.
    X. Mu, H.Y. Zhou, D.Q. He, W.Y. Zhao, P. Wei, W.T. Zhu, X.L. Nie, H.J. Liu, and Q.J. Zhang, Nano Energy 33, 55–64 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xinge Guo
    • 1
  • Wanting Zhu
    • 1
    Email author
  • Lin Xing
    • 1
  • Xin Mu
    • 1
  • Cuncheng Li
    • 1
  • Shifang Ma
    • 1
  • Ping Wei
    • 1
  • Xiaolei Nie
    • 1
  • Qingjie Zhang
    • 1
  • Wenyu Zhao
    • 1
    Email author
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations