Advertisement

Tuning Stress in Cu Thin Films by Developing Highly (111)-Oriented Nanotwinned Structure

  • I-Ju Wang
  • Ching-Shun Ku
  • Tu-Ngoc Lam
  • E-Wen Huang
  • K. N. Tu
  • Chih ChenEmail author
TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 11 Downloads
Part of the following topical collections:
  1. TMS2019 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

We have examined the effect of different bath temperatures on residual stress of both the random-oriented Cu films and the highly (111)-oriented nanotwinned Cu films by synchrotron radiation x-ray measurements. The bath temperature varied from 15°C to 40°C. The results indicate that the average residual stress in the highly (111)-oriented nanotwinned films is higher than that in the randomly oriented Cu films. However, the stress in the highly (111)-oriented Cu decreases with increasing bath temperature. The average residual stress can be reduced from 253 MPa electroplated at 15°C to 95 MPa under a bath temperature of 35°C. We could successfully tune and measure residual stress of the Cu thin films. The films with low residual stress prevent warpage from occurring on the substrate and lower the processing failure in copper direct bonding and other processes that need alignment.

Keywords

Residual stress nanotwinned Cu electroplating synchrotron x-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the ‘‘Center for the Semiconductor Technology Research’’ from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. The work was also supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST-108-3017-F-009-003.

References

  1. 1.
    R.R. Schaller, IEEE Spectr. 34, 52 (1997).CrossRefGoogle Scholar
  2. 2.
    V.S. Rao, C.T. Chong, D. Ho, D.M. Zhi, C.S. Choong, S.L. Ps et al., Development of high density fan out wafer level package (HD FOWLP) with multi-layer fine pitch RDL for mobile applications, in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (2016), pp. 1522–1529. IEEEGoogle Scholar
  3. 3.
    J.H. Lau, 3D IC heterogeneous integration by FOWLP.Fan-Out Wafer-Level Packaging, ed. J.H. Lau (Singapore: Springer, 2018), pp. 269–303.CrossRefGoogle Scholar
  4. 4.
    J.H. Lau, M. Li, D. Tian, N. Fan, E. Kuah, W. Kai, M. Li, J. Hao, Y.M. Cheung, Z. Li, and K.H. Tan, IEEE Trans. Compon. Packag. Manuf. Technol. 7, 1729 (2017).CrossRefGoogle Scholar
  5. 5.
    G. Schlottig, A. Xiao, H. Pape, B. Wunderle, and L.J. Ernst, Interfacial strength of silicon-to-molding compound changes with thermal residual stress, in 2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE) (2010), pp. 1–5. IEEEGoogle Scholar
  6. 6.
    J. Xi, D. Yang, L. Bai, X. Zhai, F. Xiao, H. Guo et al., Reliability of RDL structured wafer level packages, in 2013 14th International Conference on Electronic Packaging Technology (2013), pp. 1029–1032. IEEEGoogle Scholar
  7. 7.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).CrossRefGoogle Scholar
  8. 8.
    D. Xu, V. Sriram, V. Ozolins, J.M. Yang, K.N. Tu, G.R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, and E. Zschech, Microelectron. Eng. 85, 2155 (2008).CrossRefGoogle Scholar
  9. 9.
    L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).CrossRefGoogle Scholar
  10. 10.
    E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, and K. Lu, Appl. Phys. Lett. 85, 4932 (2004).CrossRefGoogle Scholar
  11. 11.
    R. Rosenberg, D.C. Edelstein, C.K. Hu, and K.P. Rodbell, Annu. Rev. Mater. Sci. 30, 229 (2000).CrossRefGoogle Scholar
  12. 12.
    K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, Science 321, 1066 (2008).CrossRefGoogle Scholar
  13. 13.
    K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, J. Appl. Phys. 108, 066103 (2010).CrossRefGoogle Scholar
  14. 14.
    I.H. Tseng, Y.J. Li, B. Lin, C.C. Chang, and C. Chen, High electromigration lifetimes of nanotwinned Cu redistribution lines, in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) (2019), pp. 1328–1332. IEEEGoogle Scholar
  15. 15.
    Y.S. Huang, C.M. Liu, W.L. Chiu, and C. Chen, Scripta Mater. 89, 5 (2014).CrossRefGoogle Scholar
  16. 16.
    C.H. Tseng, K.N. Tu, and C. Chen, Sci. Rep. 8, 1 (2018).CrossRefGoogle Scholar
  17. 17.
    Yen-Chieh Chen and Chih Chen, Study of Electrodeposition of Nanotwinned Cu Films at Different Bath Temperatures (Hsinchu: Department of Materials Science and Engineering, National Chiao Tung University, 2017), p. 78.Google Scholar
  18. 18.
    A.F. Burnett and J.M. Cech, J. Vac. Sci. Technol. A Vac. Surf. Films 11, 2970 (1993).CrossRefGoogle Scholar
  19. 19.
    M.N. James, Eng. Fail. Anal. 18, 1909 (2011).CrossRefGoogle Scholar
  20. 20.
    C.M. Liu, H.W. Lin, C.L. Lu, and C. Chen, Sci. Rep. 4, 6123 (2014).CrossRefGoogle Scholar
  21. 21.
    A.N. Wang, C.P. Chuang, G.P. Yu, and J.H. Huang, Surf. Coat. Technol. 262, 40 (2015).CrossRefGoogle Scholar
  22. 22.
    C.H. Ma, J.H. Huang, and H. Chen, Thin Solid Films 418, 73 (2002).CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, C.S. Yang, J.A. Chen, G.F. Ding, W. Ding, L. Wang, M.J. Wang, Y.M. Zhang, and T.H. Zhang, Thin Solid Films 460, 175 (2004).CrossRefGoogle Scholar
  24. 24.
    W. Köster and H. Franz, Metall. Rev. 6, 1 (1961).Google Scholar
  25. 25.
    E. Chason, J.W. Shin, S.J. Hearne, and L.B. Freund, J. Appl. Phys. 111, 083520 (2012).CrossRefGoogle Scholar
  26. 26.
    E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, and S.J. Hearne, Phys. Rev. Lett. 88, 156103 (2002).CrossRefGoogle Scholar
  27. 27.
    R. Treml, D. Kozic, J. Zechner, X. Maeder, B. Sartory, H.P. Gänser, R. Schöngrundner, J. Michler, R. Brunner, and D. Kiener, Acta Mater. 103, 616 (2016).CrossRefGoogle Scholar
  28. 28.
    R.M. Keller, S.P. Baker, and E. Arzt, J. Mater. Res. 13, 1307 (1998).CrossRefGoogle Scholar
  29. 29.
    T. Hanabusa, K. Kusaka, and O. Sakata, Thin Solid Films 459, 245 (2004).CrossRefGoogle Scholar
  30. 30.
    R.P. Vinci, E.M. Zielinski, and J.C. Bravman, Thin Solid Films 262, 142 (1995).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • I-Ju Wang
    • 1
  • Ching-Shun Ku
    • 2
  • Tu-Ngoc Lam
    • 1
  • E-Wen Huang
    • 1
  • K. N. Tu
    • 3
  • Chih Chen
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC
  2. 2.National Synchrotron Radiation Research CenterHsinchuTaiwan, ROC
  3. 3.Department of Materials Science and EngineeringUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations