Low Temperature Cu-to-Cu Bonding in Non-vacuum Atmosphere with Thin Gold Capping on Highly (111) Oriented Nanotwinned Copper

  • Yu-Ting Wu
  • Chih ChenEmail author
TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2019 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder


Cu-to-Cu bonding has drawn a lot of attention as it not only has excellent electrical and thermal properties but also excellent electromigration resistance. It is believed to be a next-generation technology of IC packaging and it will help keep Moore’s law effective. According to previous studies, copper direct bonding using nanotwinned copper can reduce the bonding temperature to 150°C but still requires a vacuum atmosphere. This study employed an E-gun to plate a gold layer on nanotwinned copper thin films in order to prevent oxidation. With the aid of the thin gold layer, we can prevent the oxidation of Cu surfaces and reduce the surface roughness. In this way, we achieved bonding at 200°C in N2 and 250°C in ambient pressure with a low bonding pressure of 0.78 MPa.


Direct bonding capping anti-oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    G.E. Moore, IEEE Solid-State Circuits Mag. 11, 33 (2006).CrossRefGoogle Scholar
  2. 2.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).CrossRefGoogle Scholar
  3. 3.
    L. Lu, Z. You, and K. Lu, Scr. Mater. 66, 11 (2012).Google Scholar
  4. 4.
    A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh, Acta Mater. 59, 6 (2011).Google Scholar
  5. 5.
    C.M. Liu, H.-W. Lin, Y.-S. Huang, Y.-C. Chu, C. Chen, D.-R. Lyu, K.-N. Chen, and K.N. Tu, Sci. Rep. 5, 9734 (2015).CrossRefGoogle Scholar
  6. 6.
    C.H. Tseng, K. Tu, C. Chen, Sci. Rep. 8, 10671 (2018).Google Scholar
  7. 7.
    A.K. Panigrahi, H. Kumar, S. Bonam, T. Ghosh, N. Paul, S.R.K. Vanjari, and S.G. Singh, ECTC 1561 (2018).Google Scholar
  8. 8.
    Y.-P. Huang, Y.-S. Chien, R.-N. Tzeng, M.-S. Shy, T.-H. Lin, K.-H. Chen, C.-T. Chiu, J.-C. Chiou, C.-T. Chuang, and W. Hwang, IEEE Electr. Device L. 34, 1551 (2013).CrossRefGoogle Scholar
  9. 9.
    Y.-C. Chu and C. Chen, Thin Solid Films. 667, 55 (2018).CrossRefGoogle Scholar
  10. 10.
    J.-Y. Juang, C.-L. Lu, K.-J. Chen, C.-C.A. Chen, P.-N. Hsu, C. Chen, and K. Tu, Sci. Rep. 8, 13910 (2018).CrossRefGoogle Scholar
  11. 11.
    H. Takagi, R. Maeda, T.R. Chung, N. Hosoda, and T. Suga, Jpn. J. Appl. Phys. 37, 4197 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations