Recent Advances and Progress in Development of the Field Effect Transistor Biosensor: A Review

  • Tanu Wadhera
  • Deepti Kakkar
  • Girish WadhwaEmail author
  • Balwinder Raj


The vital utilization of biosensors in different domains has led to the design of much more precise and powerful biosensors, since they have the potential to attain information in a fast and simple manner compared to conventional assays. The present review describes the basic concepts, operation, and construction of biosensors and presented an ideology that choice of categorization, selection of immobilization method and advantages are crucial factors for an efficient and commercial biosensor. Amongst various biosensors, the field effect transistor (FET)-based biosensors have shown much more potential and immense advantages such as high detection ability and sensitivity for both neutral and charged biomolecules and, hence, have been explored comprehensively in the present review. This paper discusses the current challenges in device design by mainly focusing on the quantitative and qualitative performance parameters such as sensing surface properties, signal-to-noise ratio and various other factors, since consideration of these factors will eventually address the crucial concerns related to device design and practical limitations. The critical measures to translate the commercialization of biosensors in the market at a high pace have also been discussed. Hence, the discussion on device challenges illustrates that there is a scope of improvement in the areas such as short-channel effects, specificity and nanocavity filling factor for revolutionary advances in FET-based biosensors. Optimal selection of design rules and biosensing material has the potential to feature the next generation of biosensors. The present paper reports that following integrated multidisciplinary approaches and switching to nanotechnology in designing of FET-based biosensors can offer a lot of improvements in the practical key factors (such as low cost and reliability) and opportunities for the biosensors in the marketplace.


Biosensor field effect transistor (FET) immobilization sensitivity nanocavity dielectric modulated 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    C.L. Clark Jr, and C. Lyons, Ann. N.Y. Acad. Sci. 102, 29 (1962).Google Scholar
  2. 2.
    P. Mehrotra, J. Oral Biol. Craniofac. Res. 6, 153 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Patel, R. Nanda, S. Sahoo, and E. Mohapatra, Biochem. Res. Int., 3130469 (2016).CrossRefGoogle Scholar
  4. 4.
    J.C. Dutta and S. Roy, Am. J. Biomed. Sci. 3, 176 (2011).CrossRefGoogle Scholar
  5. 5.
    B.N. Giepmans, S.R. Adams, M.H. Ellisman, and R.Y. Tsien, Science 312, 217 (2006).CrossRefGoogle Scholar
  6. 6.
    C.S. Pundir, S. Lata, and V. Narwal, Biosens. Bioelectron. 117, 373 (2018).CrossRefGoogle Scholar
  7. 7.
    S.K. Arya, A. Chaubey, and B.D. Malhotra, Proc. Indian Natl. Sci. Acad. 72, 249 (2006).Google Scholar
  8. 8.
    S. Cheng, K. Hotani, S. Hideshima, S. Kuroiwa, T. Nakanishi, M. Hashimoto, and T. Osaka, Materials 7, 2490 (2014).CrossRefGoogle Scholar
  9. 9.
    H. Du, C.M. Strohsahl, J. Camera, B.L. Miller, and T.D. Krauss, J. Am. Chem. Soc. 127, 7932 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Hasan, M. Nurunnabi, M. Morshed, A. Paul, A. Polini, T. Kuila, and A. A. Jaffa, BioMed. Res. Int. 2014, 18 (2014).Google Scholar
  11. 11.
    P. Damborský, J. Švitel, and J. Katrlík, Essays Biochem. 60, 91 (2016).CrossRefGoogle Scholar
  12. 12.
    T. Osaka, M. Datta, and Y. Shacham-Diamand, SSBM (2009).Google Scholar
  13. 13.
    A. Syahir, K. Usui, K.Y. Tomizaki, K. Kajikawa, and H. Mihara, Microarrays 4, 228 (2015).CrossRefGoogle Scholar
  14. 14.
    D.A. Hall, J. Ptacek, and M. Snyder, Mech. Ageing Dev. 128, 161 (2007).CrossRefGoogle Scholar
  15. 15.
    S. Ray, G. Mehta, and S. Srivastava, Proteomics 10, 731 (2010).CrossRefGoogle Scholar
  16. 16.
    E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park, B.R. Ilic, and T.M. Fahmy, Nat. Nanotechnol. 5, 138 (2010).CrossRefGoogle Scholar
  17. 17.
    A. Sassolas, L.J. Blum, and B.D. Leca-Bouvier, Biotechnol. Adv. 30, 489 (2012).CrossRefGoogle Scholar
  18. 18.
    C. Liu, C. Xu, N. Xue, J.H. Sun, H. Cai, T. Li, and J. Wang, MEMS Sensors-Design and Application, ed. S. Yellampalli (Rijeka: IntechOpen, 2018), p. 49.Google Scholar
  19. 19.
    R. Halai and M. Cooper, Label-Free Biosensor Methods in Drug Discovery, ed. Y. Fang (New York, NY: Humana Press, 2015), p. 3.Google Scholar
  20. 20.
    A. Poghossian and M.J. Schöning, Electroanalysis 26, 1197 (2014).CrossRefGoogle Scholar
  21. 21.
    J. Haccoun, B. Piro, V. Noel, and M.C. Pham, Bioelectrochemistry 68, 218 (2006).CrossRefGoogle Scholar
  22. 22.
    S. Singh, P.R. Solanki, M.K. Pandey, and B.D. Malhotra, Sensors Actuat. B: Chem. 115, 534 (2006).CrossRefGoogle Scholar
  23. 23.
    S.K. Sharma, R. Singhal, B.D. Malhotra, N. Sehgal, and A. Kumar, Biotechnol. Lett. 26, 645 (2004).CrossRefGoogle Scholar
  24. 24.
    S. Datta, L.R. Christena, and Y.R.S. Rajaram, Biotech 3, 7932 (2013).Google Scholar
  25. 25.
    B. Brena, P. González-Pombo, and F. Batista-Viera, Immobilization of Enzymes and Cells, ed. J.M. Guisan (Totowa, NJ: Humana Press, 2013), p. 15.Google Scholar
  26. 26.
    Y.C. Syu, W.E. Hsu, and C.T. Lin, ECS J. Solid State Sci. Technol. 7, Q3196 (2018).CrossRefGoogle Scholar
  27. 27.
    S. M. Sze, and K.K. Ng, (Wiley, 2006).Google Scholar
  28. 28.
    M. Kaisti, Biosens. Bioelectron. 98, 437 (2017).CrossRefGoogle Scholar
  29. 29.
    K. Shoorideh and C.O. Chui, IEEE Trans. Electron. Dev. 59, 3104 (2012).CrossRefGoogle Scholar
  30. 30.
    X. Chen, Z. Guo, G.M. Yang, J. Li, M.Q. Li, J.H. Liu, and X.J. Huang, Mater. Today 13, 28 (2010).CrossRefGoogle Scholar
  31. 31.
    P. Bergveld, IEEE Trans. Bio-med. Eng. 5, 342 (1972).CrossRefGoogle Scholar
  32. 32.
    P. Bergveld, Sensors Actuat. B: Chem. 88, 1 (2003).CrossRefGoogle Scholar
  33. 33.
    B. Palan, F.V. Santos, J.M. Karam, B. Courtois, and M. Husak, Sensors Actuat. B: Chem. 57, 63 (1999).CrossRefGoogle Scholar
  34. 34.
    P.W. Cheung, Theory, Design and Biomedical Applications of Solid State Chemical Sensors (Boca Raton: CRC Press, 1978), pp. 165–173.Google Scholar
  35. 35.
    S. Caras and J. Janata, Anal. Chem. 52, 1935 (1980).CrossRefGoogle Scholar
  36. 36.
    M. Yuqing, G. Jianguo, and C. Jianrong, Biotechnol. Adv. 21, 527 (2003).CrossRefGoogle Scholar
  37. 37.
    H. Im, X.J. Huang, B. Gu, and Y.K. Choi, Nat. Nanotechnol. 2, 430 (2007).CrossRefGoogle Scholar
  38. 38.
    A.K. Okyay, O. Hanoglu, M. Yuksel, H. Acar, S. Sülek, B. Tekcan, and M.O. Guler, Microsyst. Technol. 23, 889 (2017).CrossRefGoogle Scholar
  39. 39.
    C.H. Kim, C. Jung, K.B. Lee, H.G. Park, and Y.K. Choi, Nanotechnology 22, 135502 (2011).CrossRefGoogle Scholar
  40. 40.
    C.H. Kim, C. Jung, H.G. Park, and Y.K. Choi, Biochip J. 2, 127 (2008).Google Scholar
  41. 41.
    L. Torsi, M. Magliulo, K. Manoli, and G. Palazzo, Chem. Soc. Rev. 42, 8612 (2013).CrossRefGoogle Scholar
  42. 42.
    D. Sarkar, and K. Banerjee, in 70th Device Research Conference IEEE (2012), p. 83.Google Scholar
  43. 43.
    T. Goda and Y. Miyahara, Biosens. Bioelectron. 45, 89 (2013).CrossRefGoogle Scholar
  44. 44.
    R. Narang, M. Saxena, R.S. Gupta, and M. Gupta, IEEE Electron. Device Lett. 33, 266 (2011).CrossRefGoogle Scholar
  45. 45.
    G. Wadhwa and B. Raj, J. Electron. Mater. 47, 4683 (2018).CrossRefGoogle Scholar
  46. 46.
    M. Donnelly, D. Mao, J. Park, and G. Xu, J. Phys. D Appl. Phys. 51, 493001 (2018).CrossRefGoogle Scholar
  47. 47.
    Y. Kim, T. Lim, C.H. Kim, C.S. Yeo, K. Seo, S.M. Kim, and M.H. Yoon, NPG Asia Mater. 10, 1086 (2018).CrossRefGoogle Scholar
  48. 48.
    E. Macchia, M. Ghittorelli, F. Torricelli, and L. Torsi, in 7th IEEE International Workshop (2017), p. 68.Google Scholar
  49. 49.
    P. Yu, L. Bai, W. Li, C.G. Elósegui, J. Fei, and L. Mao, Front. Chem 7, 313 (2019).CrossRefGoogle Scholar
  50. 50.
    K. Shoorideh and C.O. Chui, Proc. Natl. Acad. Sci. 111, 5111 (2014).CrossRefGoogle Scholar
  51. 51.
    A. Porwal, and C. Sahu, in IEEE Computer Society Annual Symposium on VLSI (2018), p. 281.Google Scholar
  52. 52.
    H.K. Hunt and A.M. Armani, Nanoscale 2, 1544 (2010).CrossRefGoogle Scholar
  53. 53.
    I. Sarangadharan, A.K. Pulikkathodi, C.H. Chu, Y.W. Chen, A. Regmi, P.C. Chen, and Y.L. Wang, ECS J Solid State Sci. Technol. 7, Q3032 (2018).CrossRefGoogle Scholar
  54. 54.
    B. Ibarlucea, L. Römhildt, F. Zörgiebel, S. Pregl, M. Vahdatzadeh, W. Weber, and G. Cuniberti, Appl. Sci. 8, 950 (2018).CrossRefGoogle Scholar
  55. 55.
    I. Capek, Carbon Nanotubes-Growth and Applications, ed. M. Naraghi (Rijeka: IntechOpen, 2011), p. 75.Google Scholar
  56. 56.
    S. Naseh, M.J. Deen, and C.H. Chen, Microelectron. Reliab. 46, 201 (2006).CrossRefGoogle Scholar
  57. 57.
    S.J. Lee, C.H. Choi, A. Kamath, R. Clark, and D.L. Kwong, IEEE Electr. Device Lett. 24, 105 (2003).CrossRefGoogle Scholar
  58. 58.
    A.N. Sokolov, M.E. Roberts, and Z. Bao, Mater. Today 12, 12 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Nanoelectronic Research Lab, Department of Electronics and Communication EngineeringNITJalandharIndia

Personalised recommendations