Advertisement

Complementary Inverter Circuits Based on p-Cu2O and n-ZTO Thin Film Transistors

  • M. R. Shijeesh
  • Pillai Aswathy Mohan
  • M. K. JayarajEmail author
Article
  • 6 Downloads

Abstract

This paper describes the fabrication of copper oxide and zinc tin oxide complementary inverters where both the p-type and n-type channels were deposited by RF magnetron sputtering. We have designed low-voltage and high gain complementary inverters by combining a set of p channel copper oxide and n channel zinc tin oxide thin film transistors (TFTs) with different aspect ratios, thus reducing the difference in mobility and threshold voltage between both types of TFTs. The complementary inverters with four different geometric aspect ratios were fabricated using top-contact configuration. The voltage gain increase with aspect ratio and a maximum value of 4.2 was reached for an aspect ratio of 2 (Wp:Wn = 7200 μm/3600 μm). The voltage gain was found to be dependent on the SS value of p-type TFTs. It is also noticed that an inverter having a geometric aspect ratio of 2 gave better voltage gain and noise margin values. For a VDD = 20 V the NMH and NML values are 7 V and 6.5 V, respectively.

Keywords

Inverter copper oxide zinc tin oxide thin film transistor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, and G. Tröster, Appl. Phys. Rev. 3, 21303 (2016).CrossRefGoogle Scholar
  2. 2.
    Y. Li, J. He, S. Hsu, C. Lee, D. Su, F. Tsai, and I. Cheng, IEEE Electron Device Lett. 37, 46 (2016).CrossRefGoogle Scholar
  3. 3.
    A. Suresh, P. Wellenius, V. Baliga, H. Luo, L.M. Lunardi, and J.F. Muth, IEEE Electron Device Lett. 31, 317 (2010).CrossRefGoogle Scholar
  4. 4.
    J. Sun, D.A. Mourey, D. Zhao, S.K. Park, S.F. Nelson, D.H. Levy, D. Freeman, P. Cowdery-Corvan, L. Tutt, and T.N. Jackson, IEEE Electron Device Lett. 29, 721 (2008).CrossRefGoogle Scholar
  5. 5.
    N.P. Papadopoulos, A. Marsal, R. Picos, J. Puigdollers, and A.A. Hatzopoulos, Solid State Electron. 68, 18 (2012).CrossRefGoogle Scholar
  6. 6.
    Dhananjay, C.-W. Chu, C.-W. Ou, M.-C. Wu, Z.-Y. Ho, K.-C. Ho, and S.-W. Lee, Appl. Phys. Lett. 92, 232103 (2008)CrossRefGoogle Scholar
  7. 7.
    I.-C. Chiu, Y.-S. Li, M.-S. Tu, and I.-C. Cheng, IEEE Electron Device Lett. 35, 1263 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Zhang, J. Yang, Y. Li, J. Wilson, X. Ma, Q. Xin, and A. Song, Materials (Basel) 10, 1 (2017).Google Scholar
  9. 9.
    S. Han and S.Y. Lee, Appl. Phys. Lett. 106, 1 (2015).Google Scholar
  10. 10.
    J.Y. Kwon and J.K. Jeong, Semicond. Sci. Technol. 30, 24002 (2015).CrossRefGoogle Scholar
  11. 11.
    H.A. Al-Jawhari, Mater. Sci. Semicond. Process. 40, 241 (2015).CrossRefGoogle Scholar
  12. 12.
    Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, and H.N. Alshareef, Adv. Mater. 28, 3831 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Dindar, J.B. Kim, C. Fuentes-Hernandez, and B. Kippelen, Appl. Phys. Lett. 99, 1 (2011).CrossRefGoogle Scholar
  14. 14.
    C.-W. Ou, Dhananjay, Z.Y. Ho, Y.-C. Chuang, S.-S. Cheng, M.-C. Wu, K.-C. Ho, and C.-W. Chu, Appl. Phys. Lett. 92, 122113 (2008).CrossRefGoogle Scholar
  15. 15.
    K. Nomura, T. Kamiya, and H. Hosono, Adv. Mater. 23, 3431 (2011).CrossRefGoogle Scholar
  16. 16.
    R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, and E. Fortunato, Adv. Mater. 23, 4491 (2011).CrossRefGoogle Scholar
  17. 17.
    P.K. Nayak, J.A. Caraveo-Frescas, Z. Wang, M.N. Hedhili, Q.X. Wang, and H.N. Alshareef, Sci. Rep. 4, 4672 (2015).CrossRefGoogle Scholar
  18. 18.
    Z. Wang, H.A. Al-Jawhari, P.K. Nayak, J.A. Caraveo-Frescas, N. Wei, M.N. Hedhili, and H.N. Alshareef, Sci. Rep. 5, 9617 (2015).CrossRefGoogle Scholar
  19. 19.
    Hao Luo, Lingyan Liang, Hongtao Cao, Mingzhi Dai, Lu Yicheng, and Mei Wang, ACS Appl. Mater. Interfaces. 7, 17023 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Zhang, J. Yang, Y. Li, J. Wilson, X. Ma, Q. Xin, and A. Song, Materials (Basel) 10, 319 (2017).CrossRefGoogle Scholar
  21. 21.
    J. Yang, Y. Wang, Y. Li, Y. Yuan, Z. Hu, P. Ma, L. Zhou, Q. Wang, A. Song, and Q. Xin, IEEE Electron Device Lett. 39, 4 (2018).CrossRefGoogle Scholar
  22. 22.
    Y. Li, J. Yang, Y. Wang, P. Ma, Y. Yuan, J. Zhang, Z. Lin, L. Zhou, Q. Xin, and A. Song, IEEE Electron Device Lett. 39, 208 (2018).CrossRefGoogle Scholar
  23. 23.
    T.T. Trinh, V.D. Nguyen, K. Ryu, K. Jang, W. Lee, S. Baek, J. Raja, and J. Yi, Semicond. Sci. Technol. 26, 85012 (2011).CrossRefGoogle Scholar
  24. 24.
    C.-S. Fuh, P.-T. Liu, W.-H. Huang, and S.M. Sze, IEEE Electron Device Lett. 35, 1103 (2014).CrossRefGoogle Scholar
  25. 25.
    T.H. Tran and V.T. Nguyen, Mater. Sci. Semicond. Process. 46, 6 (2016).CrossRefGoogle Scholar
  26. 26.
    J.S. Park, H. Kim, and I.D. Kim, J. Electroceram. 32, 117 (2014).CrossRefGoogle Scholar
  27. 27.
    C.-Y. Jeong, J. Sohn, S.-H. Song, I.-T. Cho, J.-H. Lee, E.-S. Cho, and H.-I. Kwon, Appl. Phys. Lett. 102, 82103 (2013).CrossRefGoogle Scholar
  28. 28.
    M.R. Shijeesh and M.K. Jayaraj, J. Appl. Phys. 123, 161538 (2017).CrossRefGoogle Scholar
  29. 29.
    C. Huang, J. Li, Y. Fu, J. Zhang, X. Jiang, and Z.-L. Zhang, Superlattices Microstruct. 88, 426 (2015).CrossRefGoogle Scholar
  30. 30.
    S. Han and S.Y. Lee, Phys. Status Solidi 214, 1600469 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Nanophotonic and Optoelectronic Devices Laboratory, Department of PhysicsCochin University of Science and TechnologyCochinIndia
  2. 2.Centre of Excellence in Advanced MaterialsCochin University of Science and TechnologyCochinIndia
  3. 3.Inter University Centre for Nanomaterials and DevicesCochin University of Science and TechnologyCochinIndia

Personalised recommendations