Advertisement

Enhancing the Properties of Spark Plasma Sintered Nanocrystalline NdFeB Magnets by the Addition of Cu-Zn Alloy and Dy2O3 Powders

  • Shenglong Hu
  • Jing Liu
  • Yukun Liu
  • Jiasheng Zhang
  • Hongya Yu
  • Kunpeng Su
  • Youlin Huang
  • Zhongwu LiuEmail author
Article
  • 7 Downloads

Abstract

Nanocrystalline NdFeB bulk magnets were synthesized by doping non-rare earth CuxZn100−x (x = 0, 10, and 60 wt.%) alloy powders and low-cost Dy2O3 powders into melt-spun Nd10.15Pr1.86Fe80.41Al1.67B5.91 powders using spark plasma sintering (SPS). Their microstructure and magnetic properties were systematically studied. The results indicate that in the magnets doped with 1.0 wt.% Cu10Zn90 powders, Cu or Zn is evenly partitioned in irregular particle interfaces, which can improve the densification during SPS due to the “connection” effect. Zn or Dy2O3 plays an important role in suppressing grain coarsening of the Nd2Fe14B phase during SPS. Doping with 0.5 wt.% Zn, 0.5 wt.% Cu10Zn90 or 0.1 wt.% Cu60Zn40 powders can effectively improve the magnetic properties of the final products, and their intrinsic coercivities (jHc) are about 11.3%, 15.6%, 11.7% higher, respectively, than that of the additive-free magnet. Meanwhile, the SPS magnets doped with 0.5 wt.% Zn or 0.5 wt.% Cu10Zn90 powders show high jHc values with slight increases in both remanent magnetic polarization Jr and maximum energy product (BH)max. The magnets doped with both 0.1 wt.% Cu60Zn40 and 1.0 wt.% Dy2O3 powders exhibit the highest jHc of 1630 kA/m.

Keywords

Nanocrystalline NdFeB Cu-Zn alloy powders Dy2O3 powders spark plasma sintering regular/irregular interface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This work was supported by the Jiangxi Provincial Science and Technology Program (Grant No. GJJ171308), the National Natural Science Foundation of China (Grant No. 51774146), Guangzhou Municipal Science and Technology Program (No. 201707010161) and the Guangdong Key Laboratory of Rare Earth Development and Applications (Grant No. XTKY-201801).

References

  1. 1.
    O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, and J.P. Liu, Adv. Mater. 23, 821 (2011).CrossRefGoogle Scholar
  2. 2.
    K. Hirota, H. Nakamura, T. Minowa, and M. Honshima, IEEE Trans. Mag. 42, 2909 (2006).CrossRefGoogle Scholar
  3. 3.
    Q. Zhou, Z.W. Liu, X.C. Zhong, and G.Q. Zhang, Mater. Des. 86, 114 (2015).CrossRefGoogle Scholar
  4. 4.
    H.X. Zeng, Z.W. Liu, W. Li, J.S. Zhang, L.Z. Zhao, X.C. Zhong, H.Y. Yu, and B.C. Guo, J. Magn. Magn. Mater. 471, 97 (2019).CrossRefGoogle Scholar
  5. 5.
    H. Sepehri-Amin, T. Ohkubo, and K. Hono, Acta Mater. 61, 1982 (2013).CrossRefGoogle Scholar
  6. 6.
    N. Oono, M. Sagawa, R. Kasada, H. Matsui, and A. Kimura, J. Magn. Magn. Mater. 323, 297 (2011).CrossRefGoogle Scholar
  7. 7.
    W. Chen, Y.L. Huang, J.M. Luo, Y.H. Hou, X.J. Ge, Y.W. Guan, Z.W. Liu, Z.C. Zhong, and G.P. Wang, J. Magn. Magn. Mater. 476, 134 (2019).CrossRefGoogle Scholar
  8. 8.
    Z.W. Liu, L.Z. Zhao, S.L. Hu, H.Y. Yu, X.C. Zhong, and X.X. Gao, IEEE Trans. Mag. 51, 2101204 (2015).Google Scholar
  9. 9.
    F. Xu, L.T. Zhang, X.P. Dong, Q.Z. Liu, and M. Komuro, Scr. Mater. 64, 1137 (2011).CrossRefGoogle Scholar
  10. 10.
    H. Nakamura, K. Hirota, T. Minowa, and M. Honshima, IEEE Trans. Mag. 41, 3844 (2005).CrossRefGoogle Scholar
  11. 11.
    Q.Z. Liu, L.T. Zhang, X.P. Dong, F. Xu, and M. Komuro, Scr. Mater. 61, 1048 (2009).CrossRefGoogle Scholar
  12. 12.
    Y.L. Ma, Y. Liu, J. Li, C.Y. Li, and L.H. Chu, J. Magn. Magn. Mater. 322, 2419 (2010).CrossRefGoogle Scholar
  13. 13.
    W.J. Mo, L.T. Zhang, A.D. Shan, L.J. Cao, J.S. Wu, and M. Komuro, Intermetallics 15, 1483 (2007).CrossRefGoogle Scholar
  14. 14.
    Y.L. Huang, Z.W. Liu, X.C. Zhong, H.Y. Yu, and D.C. Zeng, Powder Metall. 55, 124 (2012).CrossRefGoogle Scholar
  15. 15.
    Z. Peng, D.Q. He, X. Mu, H.Y. Zhou, C.C. Li, S.F. Ma, P.X. Ji, W.K. Hou, P. Wei, W.T. Zhu, X.L. Nie, and W.Y. Zhao, J. Electron. Mater. 47, 3350 (2018).CrossRefGoogle Scholar
  16. 16.
    Y. Liu, G.W. Xu, Y.Y. Xie, H. Lv, C.Y. Huang, Y.W. Chen, Z.F. Tong, J. Shi, and R. Xiong, Ceram. Int. 44, 9649 (2018).CrossRefGoogle Scholar
  17. 17.
    M.A. Auger, Y. Huang, H. Zhang, C.A. Jones, Z. Hong, M.P. Moody, S.G. Roberts, and P.S. Grant, J. Alloys Compd. 762, 678 (2018).CrossRefGoogle Scholar
  18. 18.
    P.Q. Zhao, Q.G. Li, R.J. Yi, Z. Wang, L.C. Lu, X. Cheng, and S.M. Dong, J. Alloys Compd. 748, 36 (2018).CrossRefGoogle Scholar
  19. 19.
    Z.B. Yin, J.T. Yuan, W.W. Xu, K. Liu, and S.Y. Yan, Ceram. Int. 44, 8977 (2018).CrossRefGoogle Scholar
  20. 20.
    X.X. Li, C. Yang, T. Chen, Z.Q. Fu, Y.Y. Li, O.M. Ivasishin, and E.J. Lavernia, Scr. Mater. 151, 47 (2018).CrossRefGoogle Scholar
  21. 21.
    T.N. Maity, K. Biswas, and B. Basu, Acta Mater. 152, 215 (2018).CrossRefGoogle Scholar
  22. 22.
    M. Galatanu, M. Enculescu, and A. Galatanu, Mater. Res. Express. 5, 026502 (2018).CrossRefGoogle Scholar
  23. 23.
    Z.W. Liu, H.Y. Huang, X.X. Gao, H.Y. Yu, X.C. Zhong, J. Zhu, and D.C. Zeng, J. Phys. D Appl. Phys. 44, 025003 (2011).CrossRefGoogle Scholar
  24. 24.
    Y.L. Huang, Z.W. Liu, X.C. Zhong, and H.Y. Yu, J. Appl. Phys. 111, 033913 (2012).CrossRefGoogle Scholar
  25. 25.
    K.H. Bae, T.H. Kim, S.R. Lee, and S. Namkung, J. Appl. Phys. 112, 093912 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Automotive StudiesJiangxi College of Applied TechnologyGanzhouPeople’s Republic of China
  2. 2.School of Material Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.School of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouPeople’s Republic of China
  4. 4.School of Material Science and EngineeringNanchang Hangkong UniversityNanchangPeople’s Republic of China

Personalised recommendations