Advertisement

Complex Dielectric, Impedance, and Electric Modulus of CuMn2O4

  • S. Mohanta
  • I. NaikEmail author
  • S. D. Kaushik
  • S. Mukherjee
  • P. Patra
Article

Abstract

Tetragonal distorted CuMn2O4 spinel has been prepared by a single-step method and its complex dielectric, impedance, and electric modulus measured with respect to frequency at different selected temperatures. In all the measurements, a frequency-dependent inflection point was observed above 170 K, revealing the cross-over in the grain and grain boundary effects in the electrical properties. Therefore, the activation energy was calculated to be \( E_{\rm{a}} \approx 0.27\,{\hbox{eV}} \) from the dielectric loss but as \( E_{\rm{a}} \approx 0.2\,{\hbox{eV}} \) from the impedance and electric modulus based on the Arrhenius nature of the relaxation time. Further, alternating-current (AC) conductivity measurements in the frequency range from 100 Hz to 1 MHz suggested hoping conduction due to small polarons.

Keywords

Dielectric behavior impedance spectroscopy electric modulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

I. Naik, S. Mohanta, and P. Patra acknowledge the UGC-DAE Consortium for Scientific Research, Mumbai Centre for the experimental facility under the collaborative research project scheme (CRS-M-229).

References

  1. 1.
    N.A. Spaldin and M. Fiebig, Science 309, 391 (2005).CrossRefGoogle Scholar
  2. 2.
    H. Schmid, Ferroelectrics 162, 317 (1994).CrossRefGoogle Scholar
  3. 3.
    J.F. Scott, Science 315, 954 (2007).CrossRefGoogle Scholar
  4. 4.
    R. Ramesh and N.A. Spaldin, Nat. Mater. 6, 21 (2007).CrossRefGoogle Scholar
  5. 5.
    M.N.O. Sadiku, Elements of Electromagnetics, 4th ed. (New York: Oxford University Press, 2007).Google Scholar
  6. 6.
    S. Mohanta, S.D. Kaushik, and I. Naik, Solid State Commun. 287, 94 (2019).CrossRefGoogle Scholar
  7. 7.
    A. Waskowska, L. Gerward, J.S. Olsen, S. Steenstrup, and E. Talik, J. Phys. Condens. Matter 13, 2549 (2001).CrossRefGoogle Scholar
  8. 8.
    G.T. Bhandage and H.V. Keer, J. Phys. C Solid State Phys. 8, 501 (1975).CrossRefGoogle Scholar
  9. 9.
    D.P. Shoemaker, J. Li, and R. Seshadri, J. Am. Chem. Soc. 131, 11450 (2009).CrossRefGoogle Scholar
  10. 10.
    E. Barsoukov and J.R. MacDonald, Impedance Spectroscopy: Theory, Experiment and Applications, 2nd ed. (New Jersey: Wiley, 2005).CrossRefGoogle Scholar
  11. 11.
    C.G. Koops, Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar
  12. 12.
    K.W. Wagner, Ann. Phys. 40, 817 (1973).Google Scholar
  13. 13.
    S. Havriliak and S. Negami, Polymer 8, 161 (1967).CrossRefGoogle Scholar
  14. 14.
    K. Morigaki, Physics of Amorphous Semiconductors (Singapore: World Scientific, 1999).CrossRefGoogle Scholar
  15. 15.
    M.A. EI Hiti, J. Phys. D Appl. Phys. 29, 501 (1996).CrossRefGoogle Scholar
  16. 16.
    I.G. Austin and N.F. Mott, Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
  17. 17.
    A.M. Shaikh, S.S. Bellard, and B.K. Chougule, J. Magn. Magn. Mater. 195, 384 (1999).CrossRefGoogle Scholar
  18. 18.
    H. Nyquist, Bell Syst. Tech. J. 11, 126 (1932).CrossRefGoogle Scholar
  19. 19.
    Y.D. Kolekar, L.J. Sanchez, and C.V. Raman, J. Appl. Phys. 115, 144106 (2014).CrossRefGoogle Scholar
  20. 20.
    D.C. Sinclair and A.R. West, J. Appl. Phys. 66, 3850 (1989).CrossRefGoogle Scholar
  21. 21.
    M. Kaiser, Mater. Res. Bull. 73, 452 (2016).CrossRefGoogle Scholar
  22. 22.
    J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid State Materials & Systems (New York: Wiley, 1987).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • S. Mohanta
    • 1
  • I. Naik
    • 1
    Email author
  • S. D. Kaushik
    • 2
  • S. Mukherjee
    • 2
  • P. Patra
    • 1
  1. 1.Department of PhysicsNorth Orissa UniversityBaripadaIndia
  2. 2.UGC-DAE Consortium for Scientific Research Mumbai CentreBARCTrombay, MumbaiIndia

Personalised recommendations