Hybrid Nickel Ferrite Nanotubes Doped Polyaniline Nanocomposite and Its Dielectric Properties

  • R. D. Balikile
  • Aashish S. RoyEmail author
  • Ameena Parveen
  • G. RamgopalEmail author
  • Nacer Badi


Nanotubes of nickel ferrite were prepared by the citrate method and were used in nanocomposite synthesis via in situ polymerization technique. The structural and surface morphology characterizations were carried out by Fourier-transform infrared spectroscopy (FTIR), x-ray powder diffraction (XRD), and scanning electron microscopy (SEM) techniques. FTIR spectra show the characteristic peaks of benzenoid ring, quinoid ring, and nickel ferrite stretching of tetrahedral and octahedral sites. XRD pattern shows the cubic spinal structure of NiFe2O4 nanotubes and it remaining undistorted even after dispersion in a polyaniline matrix. The SEM image of 15 wt.% nanocomposite shows that the polyaniline coated nickel ferrite nanotubes form a length about 100 nm. Furthermore, the DC conductivity shows three steps conductivity feature and among all prepared nanocomposites, the 15 wt.% shows high conductivity of 1.89 S/cm. This is due to high absorption at activation energy of 0.213 × 10−2 J/mol and elongation of nanocomposites chain length which is confirmed from the negative thermal coefficient (NTC) graph. The vibrating sample magnetometer (VSM) study shows the saturation magnetization decrease after formation of polyaniline nanocomposite. The dielectric properties were analyzed by impedance analyzer, and it was found that 15 wt.% nanocomposite shows the lowest dielectric constant and dielectric loss as a result of high ac conductivity of about 1.32 S/cm which is due to the sharp drop in bulk resistance and low relaxation time of 0.1375 μs as evidenced from the cole-cole plot.


Nanotubes polyaniline dielectrics conductivity nanoferrites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    H. Obayashi, Y. Sakurai, and T. Gejo, J. Solid State Chem. 17, 299 (1976).CrossRefGoogle Scholar
  2. 2.
    A.S. Roy, K.R. Anilkumar, and M.V.N. Ambika Prasad, J. Appl. Polym. Sci. 121, 675 (2011).CrossRefGoogle Scholar
  3. 3.
    W. Xue, K. Fang, H. Qiu, J. Li, and W. Mao, Synth. Met. 156, 506 (2006).CrossRefGoogle Scholar
  4. 4.
    A.S. Roy, K.R. Anilkumar, and M.V.N. Ambika Prasad, J. Appl. Polym. Sci. 123, 1928 (2012).CrossRefGoogle Scholar
  5. 5.
    A.R. Phani and S. Santucki, Mater. Lett. 50, 240 (2001).CrossRefGoogle Scholar
  6. 6.
    A. Parveen, K.R. Anilkumar, S. Ekhelikar, M. Revansiddappa, and M.V.N. Ambika Prasad, Ferroelectrics 377, 63 (2008).CrossRefGoogle Scholar
  7. 7.
    I.Y. Jeon and J.B. Baek, Materials 3, 3654 (2010).CrossRefGoogle Scholar
  8. 8.
    A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, and P.C. Ramamurthy, Composit. Part B 47, 314 (2013).CrossRefGoogle Scholar
  9. 9.
    N. Dharmaraj, H.C. Park, C.K. Kim, H.Y. Kim, and D.R. Lee, Mater. Chem. Phys. 87, 5 (2004).CrossRefGoogle Scholar
  10. 10.
    Z.D. Xiang, T. Chen, Z.M. Li, and X.C. Bian, Macromol. Mater. Eng. 294, 91 (2009).CrossRefGoogle Scholar
  11. 11.
    L.I. Qingshan, G.A.O. Wenjie, and M.A. Pengsheng, Adv. Nat. Sci. 1, 81 (2008).Google Scholar
  12. 12.
    R.D. Balikile, A.S. Roy, S.C. Nagaraju, and G. Ramgopal, J. Mater. Sci. Mater. Electron. 28, 7368 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Khasim, S.C. Raghavendra, M. Revanasiddappa, K.C. Sajjan, M. Lakshmi, and M. Faisal, Bull. Mater. Sci. 34, 1557 (2011).CrossRefGoogle Scholar
  14. 14.
    T. Bashir, A. Shakoor, E. Ahmad, M. Saeed, N.A. Niaz, and S.K. Tirmizi, Polym. Sci. Ser. B 57, 257 (2015).CrossRefGoogle Scholar
  15. 15.
    V.A. Khati, S.B. Kondawar, and V.A. Tabhane, Anal. Bioanal. Electrochem. 3, 614 (2011).Google Scholar
  16. 16.
    S. Wang, L. Hu, Y. Hu, and S. Jiao, Mater. Chem. Phys. 146, 289 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Wang, J. Lin, Z.X. Shen, and J. Sci, Adv. Mater. Dev. 1, 225 (2016).Google Scholar
  18. 18.
    G. Chakraborty, K. Gupta, A.K. Meikap, R. Babu, and W.J. Blau, J. Appl. Phys. 109, 033707 (2011).CrossRefGoogle Scholar
  19. 19.
    J.S.M. da Silva, S.M. de Souza, G. Trovati, and E.A. Sanches, J. Mol. Struct. 1127, 337 (2017).CrossRefGoogle Scholar
  20. 20.
    H. Xue, Z. Shen, and Y. Li, Synth. Met. 124, 345 (2001).CrossRefGoogle Scholar
  21. 21.
    S. Khasim, A. Pasha, A.S. Roy, A. Parveen, and N. Badi, J. Electron. Mater. 46, 4439 (2017).CrossRefGoogle Scholar
  22. 22.
    R.S. Andre, F.M. Shimizu, C.M. Miyazaki, A. Riul Jr, D. Manzani, S.J.L. Ribeiro, O.N. Oliveira Jr, L.H.C. Mattoso, and D.S. Correa, Sens. Actuat. B 238, 795 (2017).CrossRefGoogle Scholar
  23. 23.
    J.N. Ansari, S. Khasim, A. Parveen, O.A. Al-Hartomy, Z. Khattari, N. Badi, and A.S. Roy, Polym. Adv. Technol. 27, 1064 (2016).CrossRefGoogle Scholar
  24. 24.
    B. Fanfei, H. Yun, H. Ping, T. Yiwen, and J. Zhijie, Mater. Lett. 60, 3126 (2006).CrossRefGoogle Scholar
  25. 25.
    A.S. Roy, Sens. Actuat A. 280, 1–7 (2018).CrossRefGoogle Scholar
  26. 26.
    A. Johari, V. Rana, and M.C. Bhatnagar, Nanomater. Nanotechnol. 1, 49 (2011).CrossRefGoogle Scholar
  27. 27.
    J. Rockenberger, U. Zum Felde, M. Tischer, L. Troger, M. Haase, and H. Weller, J. Chem. Phys. 112, 4296 (2000).CrossRefGoogle Scholar
  28. 28.
    X. Li, M. Yu, Z. Chen, X. Lin, and Q. Wu, Sen. Actuat. B 239, 874 (2017).CrossRefGoogle Scholar
  29. 29.
    A. Puda, N. Ogurtsova, A. Korzhenko, and G. Shapovala, Prog. Polym. Sci. 28, 1701 (2003).CrossRefGoogle Scholar
  30. 30.
    R. Patil, A.S. Roy, K.R. Anilkumar, K.M. Jadhav, and S. Ekhelikar, Comput. Part B Eng. 43, 3406 (2012).CrossRefGoogle Scholar
  31. 31.
    J.P. Clere, G. Girand, J.M. Laugier, and J.M. Lucky, Adv. Phys. 39, 191 (1990).CrossRefGoogle Scholar
  32. 32.
    T.A. Ezquerra, F. Kremer, and G. Wagner, PIER 06, 273 (1992).Google Scholar
  33. 33.
    D.S. Melachain and R.E. Newnham, J. Am. Cerm. Soc. 73, 2187 (1990).CrossRefGoogle Scholar
  34. 34.
    Q. Zhou, Y. Wang, J. Xiao, and H. Fan, Synth. Met. 212, 113 (2016).CrossRefGoogle Scholar
  35. 35.
    E. Ayyıldız, Ç. Nuhoğlu, and A. Türüt, J. Electron. Mater. 31, 119 (2002).CrossRefGoogle Scholar
  36. 36.
    M. Goswamia, R. Ghoshb, T. Maruyamac, and A.K. Meikap, Appl. Surf. Sci. 364, 176 (2016).CrossRefGoogle Scholar
  37. 37.
    R. Patil, A.S. Roy, K.R. Anilkumar, and S. Ekhelikar, J. Appl. Polym. Sci. 121, 262 (2011).CrossRefGoogle Scholar
  38. 38.
    S. Agarwal, A. Greiner, and J.H. Wendorff, Prog. Polym. Sci. 38, 963 (2013).CrossRefGoogle Scholar
  39. 39.
    A.S. Roy, S. Gupta, S. Sindhu, P.C. Ramamurthy, and G. Madras, Sci. Adv. Mater. 6, 946 (2014).CrossRefGoogle Scholar
  40. 40.
    X.Z. Gao, H.J. Liu, F. Cheng, and Y. Chen, Chem. Eng. J. 283, 682 (2016).CrossRefGoogle Scholar
  41. 41.
    L. Zhou, H. Mao, and A. Yu, J. Electroanal. Chem. 761, 62 (2016).CrossRefGoogle Scholar
  42. 42.
    A. Parveen and A.S. Roy, Adv. Mater. Lett. 4, 696 (2013).CrossRefGoogle Scholar
  43. 43.
    A.S. Roy, S.H. Gopalkrishna, and A. Parveen, Polym. Adv. Technol. 25, 130 (2014).CrossRefGoogle Scholar
  44. 44.
    A.S. Roy, A. Parveen, R. Deshpande, R. Bhat, and K.R. Anilkumar, J. Nanopart. Res. 15, 1337 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.R&D Bharathiar UniversityCoimbatoreIndia
  2. 2.Department of ChemistryS.S.Tegnoor Degree CollegeGulbargaIndia
  3. 3.Department of PhysicsGovernment First Grade CollegeGurumitkalIndia
  4. 4.Department of PhysicsMaharani’s Science CollegeBangaloreIndia
  5. 5.Renewable Energy Laboratory, Department of PhysicsUniversity of TabukTabukSaudi Arabia

Personalised recommendations