Advertisement

Influence of Sputtering Power Density on the Thermoelectric and Mechanical Properties of Flexible Thermoelectric Antimony Telluride Films Deposited by DC Magnetron Sputtering

  • Prasopporn Junlabhut
  • Pilaipon Nuthongkum
  • Rachsak Sakdanuphab
  • Adul Harnwunggmoung
  • Aparporn SakulkalavekEmail author
Topical Collection: International Conference on Thermoelectrics 2019
  • 6 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2019

Abstract

Antimony telluride (Sb2Te3) films were deposited on flexible polyimide substrates by DC magnetron sputtering technique using a 99.9% alloy Sb2Te3 target. We measured structural, electrical, thermoelectric and mechanical properties with sputtering power density in the range 30–50 W. X-ray diffraction confirmed that all Sb2Te3 films have high crystallinity with a significant preferential growth along the (015) plane. Surface morphologies were verified by scanning electron microscope: deposited film grain size increased with sputtering power density. The elemental composition was determined by energy dispersive x-ray spectroscopy. Electrical transport properties, carrier concentration, was measured by Hall effect measurement at room temperature. Electrical conductivity and Seebeck coefficient were simultaneously measured by a DC four-terminal method (ZEM-3). The power factor was strongly dominated by electrical conductivity, leading to a maximum of 1.95 mW/K2m with sputtering power 45 W at 300°C. The wettability test, based on the contact angle, evaluated surface energy and hydrophilicity. Nanoindentation was measured on a NHT2 CSM Instrument with diamond Berkovich indenter (B-P 31) at room temperature. The hardness and elastic modulus of deposited Sb2Te3 films increased with the power density.

Keywords

Flexible thermoelectric antimony telluride DC magnetron sputtering sputtering power density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work has partially been supported by Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL) for financial support. Authors would like to thank Rajabhat Rajanagarindra University (RRU) for student fund support. Authors gratefully acknowledge the support Optical Thin-Film Technology Laboratory, NSTDA for Hall measurement, John Morris, KRIS and Prof. Pichet Limsuwan, Faculty of Science, KMITL, who edited this paper for us.

References

  1. 1.
    J.-C. Yang, X.-Q. Meng, C.-T. Yang, and Y. Zhang, Appl. Surf. Sci. 287, 335 (2013).Google Scholar
  2. 2.
    A. Kosarian, M. Shakiba, and E. Farshidi, IEEE J. Trans. Electr. Electron. 13, 27 (2018).CrossRefGoogle Scholar
  3. 3.
    W. Xiao, H. Deng, S. Zou, Y. Ren, D. Tang, M. Lei, C. Xiao, X. Zhou, and Y. Chen, J. Nucl. Mater. 509, 542 (2018).CrossRefGoogle Scholar
  4. 4.
    F. Anjum, R. Ahmad, N. Afzal, and G. Murtaza, Mater. Lett. 219, 23 (2018).CrossRefGoogle Scholar
  5. 5.
    G.D. Deshmukh, S.M. Patil, S.S. Patil, and P.H. Pawar, J. Chem. Biol. Phys. Sci. 5, 2769 (2015).Google Scholar
  6. 6.
    R. Sathyamoorthy and J. Dheepa, J. Phys. Chem. Solids 68, 111 (2007).CrossRefGoogle Scholar
  7. 7.
    Z. Yua, C. Yana, T. Huanga, W. Huanga, Y. Yana, Y. Zhanga, L. Liua, Y. Zhanga, and Y. Zhao, Appl. Surf. Sci. 258, 5222 (2012).CrossRefGoogle Scholar
  8. 8.
    L.M. Goncalves, P. Alpuim, A.G. Rolo, and J.H. Correia, Thin Solid Films 519, 4152 (2011).CrossRefGoogle Scholar
  9. 9.
    N.G. Patel and P.G. Patel, J. Mater. Sci. 26, 2543 (1991).CrossRefGoogle Scholar
  10. 10.
    R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, and N. El-Masry, J. Cryst. Growth 170, 817 (1997).CrossRefGoogle Scholar
  11. 11.
    T. Liu, H. Deng, H. Cao, W. Zhou, J. Zhang, J. Liu, P. Yang, and J. Chu, J. Cryst. Growth 416, 78 (2015).CrossRefGoogle Scholar
  12. 12.
    H. Shen, S. Lee, J.-G. Kang, T.-Y. Eom, H. Lee, and S. Han, Appl. Surf. Sci. 429, 115 (2012)Google Scholar
  13. 13.
    B. Fang, Z. Zeng, X. Yan, and Z. Hu, J. Mater. Sci. Mater. Electron. 24, 4 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Mizoshiri, M. Mikami, and K. Ozaki, Jpn. J. Appl. Phys. 52, 06FL07 (2012)CrossRefGoogle Scholar
  15. 15.
    T. Khumtong, P. Sukwisute, A. Sakulkalavek, and R. Sakdanuphab, J. Electron. Mater. 46, 5 (2017).CrossRefGoogle Scholar
  16. 16.
    N.-W. Park, W.-Y. Leel, J.-E. Hong, T.-H. Park, S.-G. Yoon, H. Im, H.S. Kim, and S.-K. Lee, Nanoscale Res. Lett. 10, 20 (2015).CrossRefGoogle Scholar
  17. 17.
    K.-Y. Chan and B.-S. Teo, J. Mater. Sci. 40, 5971 (2005).CrossRefGoogle Scholar
  18. 18.
    H.J. Lee, S. Hyun, H.S. Park, and S.W. Han, Microelectron. Eng. 88, 593 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Zenkiewicz, J. Achiev. Mater. 24, 1 (2007).Google Scholar
  20. 20.
    H.-J. Lee, H.S. Park, S. Han, and J.Y. Kim, Thermochim. Acta 542, 57 (2012).CrossRefGoogle Scholar
  21. 21.
    C.-H. Tasi, Y.-C. Tseng, S.-R. Jian, Y.-Y. Liao, C.-M. Lin, P.-F. Yang, D.-L. Chen, H.-J. Chen, C.-W. Luo, and J.-Y. Juang, J. Alloys Compd. 619, 834 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Chaoumead, Y.-M. Sung, and D.-J. Kwak, Adv. Condens. Matter. Phys. 2012, 1 (2012).CrossRefGoogle Scholar
  23. 23.
    H.C. Kima, T.S. Oha, and D.-B. Hyun, J. Phys. Chem. Solids 61, 743 (2000).CrossRefGoogle Scholar
  24. 24.
    T. Chen, P. Fana, Z. Zheng, D. Zhang, X. Cai, G. Liang, and J. Chi, J. Adv. Mater. 194–196, 2400 (2011).Google Scholar
  25. 25.
    P. Fan, Z.-H. Zheng, G.-X. Liang, D.-P. Zhang, and X.-M. Cai, J. Alloys Compd. 505, 278 (2010).CrossRefGoogle Scholar
  26. 26.
    S. Shena, W. Zhua, Y. Denga, H. Zhaob, Y. Penga, and C. Wang, Appl. Surf. Sci. 414, 197 (2017).CrossRefGoogle Scholar
  27. 27.
    P. Nuthongkum, R. Sakdanuphab, M. Horprathum, and A. Sakulkalavek, J. Electron. Mater. 46, 11 (2017).Google Scholar
  28. 28.
    M.S. Angelo, B.E. McCandless, R.W. Birkmire, S.A. Rykov, and J.G. Chen, Prog. Photovolt: Res. Appl. 15, 93 (2007).CrossRefGoogle Scholar
  29. 29.
    S.-R. Jian, P.H. Le, C.-W. Luo, and J.-Y. Juang, J. Appl. Phys. 121, 175302 (2017).CrossRefGoogle Scholar
  30. 30.
    J. Wang, Z. Huang, H. Duan, S. Yu, X. Feng, G. Wang, W. Zhang, and T. Wang, Acta Mech. Solida Sin. 24, 1 (2011).CrossRefGoogle Scholar
  31. 31.
    A.M. Abazari, S.M. Safavi, G. Rezazadeh, and L.G. Villanueva, Sensors 15, 28543 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Prasopporn Junlabhut
    • 1
  • Pilaipon Nuthongkum
    • 1
  • Rachsak Sakdanuphab
    • 2
    • 3
  • Adul Harnwunggmoung
    • 4
  • Aparporn Sakulkalavek
    • 1
    • 3
    Email author
  1. 1.Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.College of Advanced Manufacturing InnovationKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.Thailand Center of Excellence in Physics, Commission on Higher EducationBangkokThailand
  4. 4.Faculty of Science and TechnologyRajamangala University of Technology SuvarnabhumiNonthaburiThailand

Personalised recommendations