A Study on the Performance of Dye Sensitized Solar Cells Using Extract from Wrightia tinctoria R.Br. as Photosensitizers

  • Aneesiya K. Rajan
  • L. CindrellaEmail author


In this study, eco-friendly natural dye sensitizers were extracted from the dried leaves of Wrightia tinctoria R.Br. (commonly known as “Pala indigo” or “Dyer’s oleander”) by cold methanolic and soxhlet extraction and used in dye sensitized solar cells (DSSC). The acidification of the extracted pigments was carried out using 0.1 N HCl. The absorption characteristics were studied by UV–visible spectroscopy, and the functional groups were identified by Fourier transform infrared spectroscopy. DSSCs constructed using these sensitizers were evaluated in terms of current density–voltage characteristics and electrochemical response. The DSSC fabricated with natural dye extracted by cold methanol exhibited maximum power conversion efficiency of 0.19%. The efficiency of the acidified cold methanolic extract-based DSSC was 0.06%.


Dye sensitized solar cell Wrightia tinctoria chlorophyll indirubin J–V characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    W. Ghann, H. Kang, T. Sheikh, S. Yadav, T. Chavez-Gil, F. Nesbitt, and J. Uddin, Sci. Rep. 7, 41470 (2017).CrossRefGoogle Scholar
  2. 2.
    W. Maiaugree, S. Lowpa, M. Towannang, P. Rutphonsan, A. Tangtrakarn, S. Pimanpang, P. Maiaugree, N. Ratchapolthavisin, W. Sang-Aroon, and W. Jarernboon, Sci. Rep. 5, 15230 (2015).CrossRefGoogle Scholar
  3. 3.
    A. Orona-Navar, I. Aguilar-Hernández, A. Cerdán-Pasarán, T. López-Luke, M. Rodríguez-Delgado, D. Cárdenas-Chávez, E. Cepeda-Pérez, and N. Ornelas-Soto, Algal Res. 26, 15 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, Nat. Chem. 6, 242 (2014).CrossRefGoogle Scholar
  5. 5.
    J.P.F. Deleuze, History and description of the Royal Museum of Natural History (Paris: A. Royer, 1823).Google Scholar
  6. 6.
    C. Jolly and N.R. Mechery, Comparative pharmacognostical, Indian. J. Pharm. Sci. 51, 58 (1996).Google Scholar
  7. 7.
    Y. Chadha, The Wealth of India-Raw Materials (Council of Scientific and Industrial Research, New Delhi 1976), Accessed 5 June 2010.
  8. 8.
    P. Ramchandra, M. Basheermiya, G. Krupadanam, and G. Srimannarayana, J. Nat. Prod. 56, 1811 (1993).CrossRefGoogle Scholar
  9. 9.
    S. Sathyanarayanan, P. Selvam, J. Asha, R. George, K. Revikumar, and J. Neyts, Int. J. Chem. Sci. 7, 1 (2009).Google Scholar
  10. 10.
    M. Khyade and N. Vaikos, Int J Pharm Bio Sci 2, 176 (2011).Google Scholar
  11. 11.
    A. Muruganandam, S. Bhattacharya, and S. Ghosal, Indian J. Chem. 39B, 125 (2000).Google Scholar
  12. 12.
    S. Sathyajothi, R. Jayavel, and A.C. Dhanemozhi, Mater. Today: Proc. 4, 668–676 (2017).Google Scholar
  13. 13.
    S.M. Milenković, J.B. Zvezdanović, T.D. Anđelković, and D.Z. Marković, Adv. Technol. 1, 16–24 (2012).Google Scholar
  14. 14.
    J.R. Moed and G.M. Hallegraeff, Int. Rev. Hydrobiol. 63, 787 (1978).CrossRefGoogle Scholar
  15. 15.
    H.-G. Jang, B.-G. Heo, Y.S. Park, J. Namiesnik, D. Barasch, E. Katrich, K. Vearasilp, S. Trakhtenberg, and S. Gorinstein, Appl. Biochem. Biotechnol. 167, 1986 (2012).CrossRefGoogle Scholar
  16. 16.
    K. Hemalatha, S. Karthick, C.J. Raj, N.-Y. Hong, S.-K. Kim, and H.-J. Kim, Spectrochim. Acta, Part A. 96, 305 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Martini, C. D’Addario, C. Bonechi, G. Leone, A. Tognazzi, M. Consumi, A. Magnani, and C. Rossi, J. Photochem. Photobiol., B 101, 355 (2010).CrossRefGoogle Scholar
  18. 18.
    N. Chanayath, S. Lhieochaiphant, and S. Phutrakul, Chiang Mai Univ. Sci. Fac. J. 1, 149–160 (2002).Google Scholar
  19. 19.
    A.K. Rajan and L. Cindrella, Opt. Mater. 88, 39 (2019).CrossRefGoogle Scholar
  20. 20.
    N.C.D. Nath, H.J. Lee, W.-Y. Choi, and J.-J. Lee, Electrochim. Acta 109, 39 (2013).CrossRefGoogle Scholar
  21. 21.
    W.A. Ayalew and D.W. Ayele, Jour. Sci.: Adv. Mater. Devices 1, 488 (2016).Google Scholar
  22. 22.
    N. Kumara, P. Ekanayake, A. Lim, M. Iskandar, and L.C. Ming, J. Sol. Energy Eng. 135, 031014 (2013).CrossRefGoogle Scholar
  23. 23.
    N. Kumara, P. Ekanayake, A. Lim, L.Y.C. Liew, M. Iskandar, L.C. Ming, and G. Senadeera, J. Alloys Compd. 581, 186 (2013).CrossRefGoogle Scholar
  24. 24.
    C.-P. Hsu, K.-M. Lee, J.T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, Electrochim. Acta 53, 7514 (2008).CrossRefGoogle Scholar
  25. 25.
    S.-M. Wang, L. Liu, W.-L. Chen, E.-B. Wang, and Z.-M. Su, Dalton Trans. 42, 2691 (2013).CrossRefGoogle Scholar
  26. 26.
    F. Bella, S. Galliano, M. Falco, G. Viscardi, C. Barolo, M. Grätzel, and C. Gerbaldi, Chem. Sci. 7, 4880 (2016).CrossRefGoogle Scholar
  27. 27.
    E.N. Kumar, R. Jose, P. Archana, C. Vijila, M. Yusoff, and S. Ramakrishna, Energy Environ. Sci. 5, 5401 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Fuel Cell, Energy Materials and Physical Chemistry Lab, Department of ChemistryNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations