Enhanced Mechanical Properties of Li2O-Al2O3-SiO2 Photostructurable Glass by SrO Doping

  • Lei Chen
  • Jihua ZhangEmail author
  • Hongwei Chen
  • Libin Gao
  • Tianpeng Liang
  • Haolin Zhao
  • Jinyu Zhao
  • Xin Li


Li2O-Al2O3-SiO2 (LAS) photostructurable glasses (PSGs) are promising substrate materials with excellent three-dimensional shaping control. In this study, we prepared SrO-doped LAS-PSGs with different SrO content. The effect of SrO content on the dielectric and mechanical properties of the LAS-PSGs was investigated by deconvoluting (four-component) their Raman bands. The LAS-PSG sample with 1 wt% SrO exhibited enhanced mechanical properties: the enhanced surface micro-hardness of 568.20 HV, and the improved flexural strength of 157.23 MPa while maintaining a low dielectric loss of 4.1 × 10−3. These improvements of mechanical properties can be attributed to the increased relative fraction of Q3 units (Qn: n bridging oxygen bonds in a [SiO4] tetrahedral unit) in this sample. This is due to Q3 units being able to enhance the network structure of LAS-PSGs with little effect on [SiO4] tetrahedral units connections.


Three-dimensional integrated packaging glass interposer mechanical properties dielectric properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the support of the Innovation Foundation of Collaboration Innovation Centre of Electronic Materials and Devices (ICEM2015-4002) and the China Postdoctoral Science Foundation (NO. 2018M633343).


  1. 1.
    Y. Kuang, D. Xiao, J. Zhou, W. Li, Z. Hou, H. Cui, and X. Wu, J. Micromech. Microeng. 28, 095004 (2018).CrossRefGoogle Scholar
  2. 2.
    B. Peng, W. Hou, and Q. Xu, Opt. Commun. 424, 107 (2018).CrossRefGoogle Scholar
  3. 3.
    V. Sukumaran, T. Bandyopadhyay, V. Sundaram, and R. Tummala, IEEE Trans. Compon. Pack. Manuf. Technol. 2, 1426 (2012).CrossRefGoogle Scholar
  4. 4.
    V. Sukumaran, G. Kumar, K. Ramachandran, Y. Suzuki, K. Demir, Y. Sato, T. Seki, V. Sundaram, and R.R. Tummala, IEEE Trans. Compon. Pack. Manuf. Technol. 4, 786 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Stillman, J. Judy, and H. Helvajian, Proc. SPIE 6882, 68820J (2008).CrossRefGoogle Scholar
  6. 6.
    L. Wenyin, W. Xuezhong, X. Dingbang, H. Zhanqiang, C. Zhihua, W. Xinghua, and Z. Jian, Microelectron. Eng. 165, 52 (2016).CrossRefGoogle Scholar
  7. 7.
    T. Liang, J. Zhang, H. Chen, P. Zhang, H. Zhao, and G. Gan, Ceram. Int. 44, 8756 (2018).CrossRefGoogle Scholar
  8. 8.
    H. Zhao, J. Zhang, H. Chen, T. Liang, and M. Wei, Ceram. Int. 44, 20821 (2018).CrossRefGoogle Scholar
  9. 9.
    G.-H. Zhang, W.-W. Zheng, and K.-C. Chou, Mater. Trans. B. 48, 1134 (2017).CrossRefGoogle Scholar
  10. 10.
    R. Wang, J. Zhou, B. Li, and L. Li, J. Alloy. Compd. 490, 204 (2010).CrossRefGoogle Scholar
  11. 11.
    B. Li, S. Wang, and Y. Fang, J. Alloy. Compd. 693, 9 (2017).CrossRefGoogle Scholar
  12. 12.
    F.E. Livingston, P.M. Adams, and H. Helvajian, Appl. Phys. A 89, 97 (2007).CrossRefGoogle Scholar
  13. 13.
    S. Mrotzek, A. Harnisch, D. Hülsenberg, and U. Brokmann, Glass Technol. 45, 97 (2004).Google Scholar
  14. 14.
    M. Wang, J. Cheng, M. Li, and F. He, Phys. B 406, 3865 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Petrescu, M. Constantinescu, E.M. Anghel, I. Atkinson, M. Olteanu, M. Zaharescu, and J. Non-Cryst, Solids 358, 3280 (2012).Google Scholar
  16. 16.
    A.K. Yadav and P. Singh, RSC Adv. 5, 67583 (2015).CrossRefGoogle Scholar
  17. 17.
    D.R. Neuville, Chem. Geol. 229, 28 (2006).CrossRefGoogle Scholar
  18. 18.
    X. Wang, D.R. Ou, Z. Zhao, and M. Cheng, Ceram. Int. 42, 7514 (2016).CrossRefGoogle Scholar
  19. 19.
    H.R. Fernandes, D.U. Tulyaganov, M.J. Pascual, and J.M.F. Ferreira, Ceram. Int. 40, 129 (2014).CrossRefGoogle Scholar
  20. 20.
    H.R. Fernandes, D.U. Tulyaganov, A. Goel, and J.M.F. Ferreira, J. Eur. Ceram. Soc. 32, 291 (2012).CrossRefGoogle Scholar
  21. 21.
    H.R. Fernandes, D.U. Tulyaganov, M.J. Pascual, V.V. Kharton, A.A. Yaremchenko, and J.M.F. Ferreira, J. Eur. Ceram. Soc. 32, 2283 (2012).CrossRefGoogle Scholar
  22. 22.
    R.B. Hilborn, J. Appl. Phys. 36, 1553 (1965).CrossRefGoogle Scholar
  23. 23.
    D. Szwagierczak, B. Synkiewicz, and J. Kulawik, Ceram. Int. 44, 14495 (2018).CrossRefGoogle Scholar
  24. 24.
    M.K. Mahapatra, K. Lu, and R.J. Bodnar, Appl. Phys. A 95, 493 (2009).CrossRefGoogle Scholar
  25. 25.
    C.I. Merzbacher, W.B. White, and J. Non-Cryst, Solids 130, 18 (1991).Google Scholar
  26. 26.
    J. Salem, G. Quinn, and M. Jenkins, Fract. Mech. Ceram. 14, 531 (2005).Google Scholar
  27. 27.
    S.E. Elsaka and A.M. Elnaghy, Dent. Mater. 32, 908 (2016).CrossRefGoogle Scholar
  28. 28.
    N. Kordani, A.S. Vanini, A. Asadi, and A. Jabbari, Neural Comput. Appl. 23, 2379 (2013).CrossRefGoogle Scholar
  29. 29.
    A. Coldea, M.V. Swain, and N. Thiel, Dent. Mater. 29, 419 (2013).CrossRefGoogle Scholar
  30. 30.
    B. Strnadel, Int. J. Fract. 50, 17 (1991).CrossRefGoogle Scholar
  31. 31.
    S. Lauvahutanon, H. Takahashi, M. Shiozawa, N. Iwasaki, Y. Asakawa, M. Oki, W.J. Finger, and M. Arksornnukit, Dent. Mater. 33, 705 (2014).CrossRefGoogle Scholar
  32. 32.
    M.N. Mandikos, G.P. McGivney, E. Davis, P.J. Bush, and J.M. Carter, J. Prosthet. Dent. 85, 386 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Collaboration Innovation Center of Electric Materials and DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations