Advertisement

Pre-embedding Lithium to Build a Composite SnO2@Li/MWCNTs Anode

  • Jingyi Zou
  • Xiaogang SunEmail author
  • Rui Li
  • Qiang He
Article
  • 1 Downloads

Abstract

Lithium ions were inserted into the electrodes of tin oxide to eliminate the first irreversible capacity of the Li-SnO2 batteries. The stabilizing SEI film was obtained from pre-embedding lithium. Thereby, first irreversible capacity of the Li-SnO2 batteries is prevented with significantly increasing the specific capacity and reducing the damage. As a result, the SnO2@Li/MWCNTs electrodes exhibited outstanding electrochemical performance, first discharge specific capacity reached 1700.15 mAh g−1, and the utilization rate of active materials reached as high as 95.89% at 100 mAh g−1. After 100 cycles, the specific discharge capacity remained greater than 499.94 mAh g−1, with a coulombic efficiency of 99.77%.

Keywords

Tin oxide carbon nanotubes pre-embedding lithium first irreversible capacity lithium-ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to the Jiangxi scientific fund (20142BBE50071) and Jiangxi education fund (KJLD13006).

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    X. Zhou, L.J. Wan, and Y.G. Guo, Adv. Mater. 25, 2152 (2013).CrossRefGoogle Scholar
  2. 2.
    C. Shi, K. Xiang, Y. Zhu, X. Chen, W. Zhou, and H. Chen, Electrochim. Acta 246, 1088 (2017).CrossRefGoogle Scholar
  3. 3.
    Y. He, K. Xiang, W. Zhou, Y. Zhu, X. Chen, and H. Chen, Chem. Eng. J. 353, 666 (2018).CrossRefGoogle Scholar
  4. 4.
    Y. Chen, K. Xiang, Y. Zhu, L. Xiao, W. Chen, X. Chen, and H. Chen, J. Alloys Compd. 782, 89 (2019).CrossRefGoogle Scholar
  5. 5.
    F. Wang, Z. Zuo, L. Li, F. He, F. Lu, and Y. Li, Adv. Mater. 31, 1806272 (2019).Google Scholar
  6. 6.
    Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang, and Y. Li, Acc. Chem. Res. 50, 2470 (2017).CrossRefGoogle Scholar
  7. 7.
    Z.S. Wu, Y. Sun, Y.Z. Tan, S. Yang, X. Feng, and K.J. Müllen, Am. Chem. Soc. 134, 19532 (2012).CrossRefGoogle Scholar
  8. 8.
    A. Jahel, C.M. Ghimbeu, L. Monconduit, and C. Vix-Guterl, Adv. Energy Mater. 4, 1400025 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Wang, H.C. Zeng, and J.Y. Lee, Adv. Mater. 18, 645 (2006).CrossRefGoogle Scholar
  10. 10.
    L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, and T. Wang, Electrochem. Commun. 12, 1383 (2010).CrossRefGoogle Scholar
  11. 11.
    J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, and X.W. Lou, J. Phys. Chem. C 113, 20504 (2009).CrossRefGoogle Scholar
  12. 12.
    H.X. Zhang, C. Feng, Y.C. Zhai, K.L. Jiang, Q.Q. Li, and S.S. Fan, Adv. Mater. 21, 2299 (2009).CrossRefGoogle Scholar
  13. 13.
    Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, and J. Liu, Adv. Energy Mater. 2, 95 (2012).CrossRefGoogle Scholar
  14. 14.
    J.S. Chen, L.A. Archer, and X.W.D.J. Lou, Mater. Chem. 21, 9912 (2011).CrossRefGoogle Scholar
  15. 15.
    H.B. Wu, J.S. Chen, H.H. Hng, and X.W.D. Lou, Nanoscale 4, 2526 (2012).CrossRefGoogle Scholar
  16. 16.
    D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.-C. Jumas, and J.-M. Tarascon, J. Mater. Chem. 17, 3759 (2007).CrossRefGoogle Scholar
  17. 17.
    J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, and H. Fan, Science 330, 1515 (2010).CrossRefGoogle Scholar
  18. 18.
    X. Zhou, L.J. Wan, and Y.G. Guo, Adv. Mater. 25, 2152 (2013).CrossRefGoogle Scholar
  19. 19.
    X. Liu, P. Xu, X. Li, Y. Peng, and Z.J. Le, Mater. Sci. 53, 15621 (2018).CrossRefGoogle Scholar
  20. 20.
    C. He, Y. Xiao, H. Dong, Y. Liu, M. Zheng, K. Xiao, and B. Lei, Electrochim. Acta 142, 157 (2014).CrossRefGoogle Scholar
  21. 21.
    Y. Liang, W. Zhang, D. Wu, Q.Q. Ni, and M.Q. Zhang, Adv. Mater. Interfaces 5, 1800430 (2018).CrossRefGoogle Scholar
  22. 22.
    Z. Wen, Q. Wang, Q. Zhang, and J. Li, Adv. Funct. Mater. 17, 2772 (2007).CrossRefGoogle Scholar
  23. 23.
    P. Lian, J. Wang, D. Cai, L. Ding, Q. Jia, and H. Wang, Electrochim. Acta 116, 103 (2014).CrossRefGoogle Scholar
  24. 24.
    Z. Zhu, S. Wang, J. Du, Q. Jin, T. Zhang, F. Cheng, and J. Chen, Nano Lett. 14, 153 (2013).CrossRefGoogle Scholar
  25. 25.
    J.S. Chen, L.A. Archer, and X. Wen Lou, J. Mater. Chem. 21, 9912 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Liang, X.-Y. Yu, H. Zhou, H.B. Wu, S. Ding, and X.W.D. Lou, Angew. Chem. 126, 13017 (2014).CrossRefGoogle Scholar
  27. 27.
    L.N. Ping, J.M. Zheng, Z.Q. Shi, and C.Y. Wang, Acta Phys. Chim. Sin. 28, 1733 (2012).Google Scholar
  28. 28.
    M. Yuan, W. Liu, Y. Zhu, and Y.Russ Xu, J Electrochem 50, 1050 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechantronics EngineeringNanchang UniversityNanchangChina

Personalised recommendations