Advertisement

Facile Preparation of Lightweight and Flexible PVA/PEDOT:PSS/MWCNT Ternary Composite for High-Performance EMI Shielding in the X-Band Through Absorption Mechanism

  • M. Jasna
  • Neeraj K. Pushkaran
  • M. Manoj
  • C. K. Aanandan
  • M. K. JayarajEmail author
Progress and Challenges in Developing Electromagnetic Interference Materials
  • 12 Downloads
Part of the following topical collections:
  1. Progress and Challenges in Developing Electromagnetic Interference Materials

Abstract

Electromagnetic safeguards are key factors for electronic devices. Lightweight and highly flexible polymer composite films with high electrical conductivity are considered to be efficient electromagnetic interference (EMI) shielding materials. Polymer composites offer alternative to metal-based composites which have poor flexibility, corrodibility, and are difficult to process. Here, highly flexible polyvinyl alcohol/poly (3, 4-ethylenedioxythiophene):polystyrene sulfonate/multiwalled carbon nanotube (PVA/PEDOT:PSS/MWCNT) free-standing composite films were fabricated by a solution mixing process followed by a simple solvent casting technique. PVA/PEDOT:PSS/MWCNT composite films of thickness around 20 microns showed high EMI shielding effectiveness (SE) in the X-band over the frequency range of 8–12 GHz. Incorporation of MWCNT into the polymer matrix considerably increased the mechanical strength of the PVA/PEDOT:PSS/MWCNT composite free-standing film. This investigation revealed that PVA/PEDOT:PSS/MWCNT composite film with 0.5 wt.% of MWCNT showed excellent absorption-dominated EMI SE of 60 dB over the frequency range of 8–12 GHz with extensive tensile strength. Our study opens a facile way to design flexible, lightweight and free-standing films as EMI shielding for next-generation flexible electronic devices.

Keywords

EMI shielding carbon nanotubes conducting polymer electrical conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by Kerala State Council for Science, Technology and Environment (286/2014/KSCSTE), Govt. of Kerala. One of the authors (Jasna) is grateful to UGC for awarding BSRRFSMS fellowship. The authors wish to express their appreciation to Dr. Honey John, Department of Polymer Science and Rubber Technology, CUSAT, for the UTM measurement. The authors acknowledge the financial support extended by DST-FIST scheme, Government of India, for acquiring the FE-SEM facility.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, and R.K.Y. Li, Langmuir 28, 7101 (2012).CrossRefGoogle Scholar
  2. 2.
    D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Adv. Funct. Mater. 25, 559 (2015).CrossRefGoogle Scholar
  3. 3.
    M. Layani, A. Kamyshny, and S. Magdassi, Nanoscale 6, 5581 (2014).CrossRefGoogle Scholar
  4. 4.
    D. Markham, Mater. Des. 21, 45 (1999).CrossRefGoogle Scholar
  5. 5.
    C.J. von Klemperer and D. Maharaj, Compos. Struct. 91, 467 (2009).CrossRefGoogle Scholar
  6. 6.
    D.D.L. Chung, Carbon 50, 3342 (2012).CrossRefGoogle Scholar
  7. 7.
    T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, and L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008).CrossRefGoogle Scholar
  8. 8.
    D.D.L. Chung, J. Mater. Eng. Perform. 9, 350 (2000).CrossRefGoogle Scholar
  9. 9.
    I. C. P. Project, An Introduction to Conductive Polymer Composites (Akron: Smithers Rapra Technology, 2011).Google Scholar
  10. 10.
    S.P. Pawar, S. Kumar, A. Misra, S. Deshmukh, K. Chatterjee, and S. Bose, RSC Adv. 5, 17716 (2015).CrossRefGoogle Scholar
  11. 11.
    S.P. Pawar, D.A. Marathe, K. Pattabhi, and S. Bose, J. Mater. Chem. A 3, 656 (2015).CrossRefGoogle Scholar
  12. 12.
    S.P. Pawar, S. Stephen, S. Bose, and V. Mittal, Phys. Chem. Chem. Phys. 17, 14922 (2015).CrossRefGoogle Scholar
  13. 13.
    G.P. Kar, S. Biswas, and S. Bose, Phys. Chem. Chem. Phys. 17, 14856 (2015).CrossRefGoogle Scholar
  14. 14.
    P. Xavier and S. Bose, Phys. Chem. Chem. Phys. 17, 14972 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Biswas, Phys. Chem. Chem. Phys. 17, 27698 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Biswas, G.P. Kar, and S. Bose, Nanoscale 7, 11334 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Sharma, G. Madras, and S. Bose, J. Mater. Chem. A 3, 5991 (2015).CrossRefGoogle Scholar
  18. 18.
    V. Bhingardive, M. Sharma, S. Suwas, G. Madras, and S. Bose, RSC Adv. 5, 35909 (2015).CrossRefGoogle Scholar
  19. 19.
    S. Biswas, S.S. Panja, and S. Bose, Mater. Chem. Front. 1, 132 (2017).CrossRefGoogle Scholar
  20. 20.
    Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, and J.K. Kim, ACS Appl. Mater. Interfaces 9, 9059 (2017).CrossRefGoogle Scholar
  21. 21.
    Y. Xu, Y. Li, W. Hua, A. Zhang, and J. Bao, ACS Appl. Mater. Interfaces 8, 24131 (2016).CrossRefGoogle Scholar
  22. 22.
    B. Shen, Y. Li, W. Zhai, and W. Zheng, ACS Appl. Mater. Interfaces 8, 8050 (2016).CrossRefGoogle Scholar
  23. 23.
    T.M. Swager, Macromolecules 50, 4867 (2017).CrossRefGoogle Scholar
  24. 24.
    S.T. Hsiao, C.C.M. Ma, W.H. Liao, Y.S. Wang, S.M. Li, Y.C. Huang, R. Bin Yang, and W.F. Liang, ACS Appl. Mater. Interfaces 6, 10667 (2014).CrossRefGoogle Scholar
  25. 25.
    W.L. Song, J. Wang, L.Z. Fan, Y. Li, C.Y. Wang, and M.S. Cao, ACS Appl. Mater. Interfaces 6, 10516 (2014).CrossRefGoogle Scholar
  26. 26.
    A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B.P. Singh, A.P. Singh, S.K. Dhawan, and S.R. Dhakate, ACS Appl. Mater. Interfaces 8, 10600 (2016).CrossRefGoogle Scholar
  27. 27.
    B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, and C.B. Park, ACS Appl. Mater. Interfaces 9, 20873 (2017).CrossRefGoogle Scholar
  28. 28.
    H. Li, X. Lu, D. Yuan, J. Sun, F. Erden, F. Wang, and C. He, J. Mater. Chem. C 5, 8694 (2017).CrossRefGoogle Scholar
  29. 29.
    S.M.N. Sultana, S.P. Pawar, M. Kamkar, and U. Sundararaj, J. Electron. Mater. (2019).  https://doi.org/10.1007/s11664-019-07371-8.
  30. 30.
    H. Nallabothula, Y. Bhattacharjee, L. Samantara, and S. Bose, ACS Omega 4, 1781 (2019).CrossRefGoogle Scholar
  31. 31.
    P. Li, D. Du, L. Guo, Y. Guo, and J. Ouyang, J. Mater. Chem. C 4, 6525 (2016).CrossRefGoogle Scholar
  32. 32.
    M.L. Hallensleben, R. Fuss, and F. Mummy, in Ullmann’s Encyclopedia of Industrial Chemistry, ed. B. Elvers (Wiley, Weinheim, 2000), pp. 1–23Google Scholar
  33. 33.
    K. Lakshmi, H. John, K.T. Mathew, R. Joseph, and K.E. George, Acta Mater. 57, 371 (2009).CrossRefGoogle Scholar
  34. 34.
    N. Muthukumar, G. Thilagavathi, and T. Kannaian, High Perform. Polym. 27, 105 (2015).CrossRefGoogle Scholar
  35. 35.
    N. Joseph, C. Janardhanan, and M.T. Sebastian, Compos. Sci. Technol. 101, 139 (2014).CrossRefGoogle Scholar
  36. 36.
    M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang, M. Luo, and C. Li, Nanoscale 6, 3796 (2014).CrossRefGoogle Scholar
  37. 37.
    T.K. Gupta, B.P. Singh, S. Teotia, V. Katyal, S.R. Dhakate, and R.B. Mathur, J. Polym. Res. 20, 32 (2013).CrossRefGoogle Scholar
  38. 38.
    T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, and R.B. Mathur, J. Mater. Chem. A 1, 9138 (2013).CrossRefGoogle Scholar
  39. 39.
    J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W.G. Zheng, ACS Appl. Mater. Interfaces 5, 2677 (2013).CrossRefGoogle Scholar
  40. 40.
    Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng, Adv. Mater. 25, 1296 (2013).CrossRefGoogle Scholar
  41. 41.
    Z. Zeng, M. Chen, Y. Pei, S.I. Seyed Shahabadi, B. Che, P. Wang, and X. Lu, ACS Appl. Mater. Interfaces 9, 32211 (2017).CrossRefGoogle Scholar
  42. 42.
    S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, and Y.-C. Huang, Carbon 60, 57 (2013).CrossRefGoogle Scholar
  43. 43.
    S.K. Marka, B. Sindam, K.C. James Raju, and V.V.S.S. Srikanth, RSC Adv. 5, 36498 (2015).CrossRefGoogle Scholar
  44. 44.
    S.T. Hsiao, C.C.M. Ma, H.W. Tien, W.H. Liao, Y.S. Wang, S.M. Li, C.Y. Yang, S.C. Lin, and R. Bin Yang, ACS Appl. Mater. Interfaces 7, 2817 (2015).CrossRefGoogle Scholar
  45. 45.
    D.C. Yan, S.Y. Chen, M.K. Wu, C.C. Chi, J.H. Chao, and M.L.H. Green, Appl. Phys. Lett. 96, 18 (2010).Google Scholar
  46. 46.
    K. Lipert, M. Ritschel, A. Leonhardt, Y. Krupskaya, B. Büchner, and R. Klingeler, J. Phys. Conf. Ser. 200, 072061 (2010).CrossRefGoogle Scholar
  47. 47.
    X.G. Sun, M. Gao, C. Li, and Y. Wu, Microwave Absorption Characteristics of Carbon Nanotubes, ed. S. Yellampalli (Europe: In Tech, 2011), pp. 265–278.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsCochin University of Science and TechnologyKochiIndia
  2. 2.Department of ElectronicsCochin University of Science and TechnologyKochiIndia
  3. 3.Centre of Excellence in Advanced MaterialsCochin University of Science and TechnologyKochiIndia
  4. 4.Inter University Centre for Nanomaterials and DevicesCochin University of Science and TechnologyKochiIndia

Personalised recommendations