Journal of Electronic Materials

, Volume 48, Issue 12, pp 8014–8023 | Cite as

Thin Film of Perovskite (Mixed-Cation of Lead Bromide FA1−xMAxPbBr) Obtained by One-Step Method

  • B. SlimiEmail author
  • M. Mollar
  • B. Marí
  • R. Chtourou


Perovskite materials for solar cell applications were prepared by a one-step method. In the following work, the spin coating technique was used for organic–inorganic hybrid perovskite formamidinium lead tribromide (FAPbBr3), methylammonium lead tribromide (MAPbBr3) and formamidinium methylammonium lead tribromide (FA1−xMAxPbBr3).Thin films of mixed FA1−xMAxPbBr3 (x = 0–1) perovskites deposited on indium tin oxide glass substrates were obtained by mixing FAPbBr3 and MAPbBr3 in different proportions. Structural x-ray diffraction (XRD), morphological (Scanning Electron Microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) and optical (uv–visible spectroscopy (UV–Vis) proprieties were investigated for all synthesized perovskites as a function of the MA/FA ratio. The (XRD) analysis shows the formation of a cubic-phase perovskite with space group Pm-3 m in the composition range 0 ≤ x ≤ 1. High absorbance levels were obtained in the infrared region 500-900 nm for mixed perovskites FAMAPbBr3. The estimated energy band-gap from the absorbance spectral measurements for FAMAPbBr3 thin films was in the range of 2.2 eV for FAPbBr3 and 2.3 eV for MAPbBr3, respectively. The photoluminescence emission of mixed FA/MA perovskite thin films was located in intermediate values between 580 nm and 555 nm.


Organic–inorganic hybrid perovskite high absorbance Photoluminescence x-ray techniques thin films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Nanomaterials and Systems Laboratory for Renewable Energies, Research and Technology Center of Energy Technoparc Borj Cedria for financial support. This work was supported by the Ministerio de Economía y Competitividad (ENE2013- 46624-C4-4-R) and the Generalitat Valenciana (Prometeus 2014/044).

Conflict of interest

We declare that no conflict of interest exists.


  1. 1.
    D. Bi, W. Tress, I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. Baena, J. Decoppet, S. Zakeeruddin, M. Nazeeruddin, M. Grätzel, and A. Hagfeldt, Sci. Adv. 2, 1501170 (2016).Google Scholar
  2. 2.
    M.A. Green and A. Ho-Baillie, ACS Energy Lett. 2, 822 (2017).Google Scholar
  3. 3.
    M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nat. Photonics 8, 506 (2014).Google Scholar
  4. 4.
    M. Liu, M.B. Johnston, and H.J. Snaith, Nature 501, 395–398 (2013).Google Scholar
  5. 5.
    Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Energy Environ. Sci. 7, 2934–2938 (2014).Google Scholar
  6. 6.
    W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Horantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, and H.J. Snaith, Nat. Commun. 6, 6142 (2015).Google Scholar
  7. 7.
    P. Gonzalez-Pedro, V. Juarez-Perez, E.J. Arsyad, W.S. Barea, E.M. Fabregat-Santiago, F. Morasero, and I. Bisquert, Nano Lett. 14, 888–893 (2014).Google Scholar
  8. 8.
    S.D. Adinolfi, V. Comin, R. Yuan, M. Alarousu, E. Buin, A. Chen, Y. Hoogland, S. Rothenberger, A. Katsiev, and K. Low, Sciences 347, 519–522 (2015).Google Scholar
  9. 9.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Sciences 348, 1234 (2015).Google Scholar
  10. 10.
    B. Slimi, M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou, and B. Marí, Energy Procedia 102, 87–95 (2016).Google Scholar
  11. 11.
    O. Knop, R.E. Wasylishen, M.A. White, T.S. Cameron, M.J. Vanoort, and M. Can, J. Chem. Rev. Can. Chim. 68, 412 (1990).Google Scholar
  12. 12.
    J.H. Heo, D.H. Song, and S.H. Im, Adv. Mater. 26, 8179 (2014).Google Scholar
  13. 13.
    B. Slimi, M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou, and B. Marı, Monatsh. Chem. 148, 835–844 (2017).Google Scholar
  14. 14.
    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Energy Environ. Sci. 7, 982–988 (2014).Google Scholar
  15. 15.
    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).Google Scholar
  16. 16.
    Y. Hou, X. Du, S. Scheiner, D.P. Mc Meekin, Z. Wang, N. Li, M.S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N.A. Luechinger, A. Hirsch, P. Schmuki, H.P. Steinrück, R.H. Fink, M. Halik, H.J. Snaith, and C.J. Brabec, Sciences 358, 1192 (2017).Google Scholar
  17. 17.
    Y. Wang, J. Wu, P. Zhang, D. Liu, T. Zhang, L. Ji, X. Gu, Z.D. Chen, and S. Li, Nano Energy 39, 616 (2017).Google Scholar
  18. 18.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I.I. Seok, Sciences 348, 1234–1237 (2015).Google Scholar
  19. 19.
    A. Binek, F.C. Hanusch, P. Docampo, and T. Bein, J. Phys. Chem. Lett. 6, 1249–1253 (2015).Google Scholar
  20. 20.
    M.B. Johnston and L.M. Herz, Acc. Chem. Res. 49, 146–154 (2016).Google Scholar
  21. 21.
    L. Dou, Y.M. Yang, J. You, W. Chang, G. Li, Z. Hong, and Y. Yang, Nat. Commun. 5, 1–6 (2014).Google Scholar
  22. 22.
    B. Náfrádi, G. Náfrádi, L. Forró, and E. Horváth, J. Phys. Chem. C 119, 25204–25208 (2015).Google Scholar
  23. 23.
    Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.W. Koh, G.D. Scholes, and B.P. Rand, Nat. Photonics 11, 108–115 (2017).Google Scholar
  24. 24.
    H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, and T.W. Lee, Science 350, 1222–1225 (2015).Google Scholar
  25. 25.
    M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E.M. Beauregard, P. Kanjanaboos, Z. Lu, D.H. Kim, and E.H. Sargent, Nat. Nanotechnol. 11, 1–27 (2016).Google Scholar
  26. 26.
    J. Kim, S.H. Lee, J.H. Lee, and K.H. Hong, J. Phys. Chem. Lett. 5, 1312–1317 (2014).Google Scholar
  27. 27.
    H. Fang, F. Wang, S. Adjokatse, N. Zhao, J. Even, and M. Antonietta Loi, Light Sci. Appl. 5, e16056 (2015).Google Scholar
  28. 28.
    C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, and L.M. Herz, Adv. Mater. 26, 1584–1589 (2014).Google Scholar
  29. 29.
    C.S. Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, and V. Sundström, J. Am. Chem. Soc. 136, 5189–5192 (2014).Google Scholar
  30. 30.
    T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.C. Mhaisalkar, P.P. Boix, and T. Baikie, J. Phys. Chem. C 118, 16458–16462 (2014).Google Scholar
  31. 31.
    S.N. Habisreutinger, D.P. Mcmeekin, H.J. Snaith, and R.J. Nicholas, APL Mater. 4, 091503 (2016).Google Scholar
  32. 32.
    D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, and H.J. Snaith, Sciences 351, 151–155 (2016).Google Scholar
  33. 33.
    Z. Wang, D.P. Mc Meekin, N. Sakai, S.V. Reenen, K. Wojciechowski, J.B. Patel, M.B. Johnston, and H.J. Snaith, Adv. Mater. 29, 1604186 (2017).Google Scholar
  34. 34.
    J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R.S. Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Graetzel, and H. Feldt, Energy Environ. Sci. 8, 2928 (2015).Google Scholar
  35. 35.
    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Nature 517, 476 (2015).Google Scholar
  36. 36.
    T.J. Jacobsson, J.P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Gratzel, and H. Feldt, Energy Environ. Sci. 9, 1706 (2016).Google Scholar
  37. 37.
    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White, J. Mater. Chem. A 1, 5628–5641 (2013).Google Scholar
  38. 38.
    J.R. Carvajal, Newsletter 26, 12–19 (2000).Google Scholar
  39. 39.
    O. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G. Li, and Y.J. Yang, Chem. Soc. 136, 622 (2014).Google Scholar
  40. 40.
    J.H.C. Im, R. Lee, J.W. Lee, S.W. Park, and N.G. Park, Nanoscale 3, 4088 (2011).Google Scholar
  41. 41.
    D. Liu and T.L. Kelly, Nat. Photonics 8, 133 (2014).Google Scholar
  42. 42.
    L. Chen, Y.Y. Tan, Z.X. Chen, T. Wang, S. Hu, Z.A. Nan, L.O. Xie, Y. Hui, J.X. Huang, C. Zhan, S.H. Wang, J.Z. Zhou, J.W. Yan, B.W. Mao, and Z.O. Tian, J. Am. Chem. Soc. 8b11610, 1–15 (2019).Google Scholar
  43. 43.
    T. Matsui, J.Y. Seo, M. Saliba, S.M. Zakeeruddin, and M. Gratzel, Adv. Mater. 29, 1606258 (2017).Google Scholar
  44. 44.
    P. Scherrer, Math. Phys. 2, 98–100 (1918).Google Scholar
  45. 45.
    N. Giesbrecht, J. Schlipf, L. Oesinghaus, A. Binek, T. Bein, P. Müller-Buschbaum, and P. Docampo, ACS. Energy. Lett. 1, 150–154 (2016).Google Scholar
  46. 46.
    Z. Yang, C.C. Chueh, P.W. Liang, M. Crump, F. Lin, Z. Zhu, and A.K.Y. Jen, Nano Energy 22, 328 (2016).Google Scholar
  47. 47.
    T. Zhao, H. Liu, M.E. Ziffer, A. Rajagopal, L. Zuo, D.S. Ginger, X. Li, and A.K.Y. Jen, ACS Energy Lett. 3, 1662–1669 (2018).Google Scholar
  48. 48.
    Y.H. Kim, H. Cho, J.H. Heo, T.S. Kim, N. Myoung, C.L. Lee, S.H. Im, and T.W. Lee, Adv. Mater. 27, 1248–1254 (2015).Google Scholar
  49. 49.
    C. Chen, X. Hu, W. Lu, S. Chang, L. Shi, L. Li, H. Zhong, and J.B. Han, J. Phys. D Appl. Phys. 51, 045105 (2018).Google Scholar
  50. 50.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Nano Lett. 13, 1764–1769 (2013).Google Scholar
  51. 51.
    F. Zhang, B. Yang, K. Zheng, S. Yang, Y. Li, W. Deng, and R. He, Nano-Micro Lett. 10, 43 (2018).Google Scholar
  52. 52.
    O.D. Miller, E. Yablonovitch, and S.R. Kurtz, IEEE J. Photovolt. 2, 303 (2012).Google Scholar
  53. 53.
    O.J. Weber, B. Charles, and M.T. Weller, J. Mater. Chem. A4, 15375–15382 (2016).Google Scholar
  54. 54.
    J. Yan, X. Ke, Y. Chen, A. Zhang, and B. Zhang, Appl. Surf. Sci. 351, 1191–1196 (2015).Google Scholar
  55. 55.
    T. Etienne, E. Mosconi, and F. De Angelis, J. Phys. Chem. Lett. 7, 1638–1645 (2016).Google Scholar
  56. 56.
    B. Zhao, M. Abdi-Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj, W. Nie, A.J. Pearson, Y. Puttisong, K.C. Gödel, H.E. Beere, D.A. Ritchie, A.D. Mohite, S.E. Dutton, R.H. Friend, and A. Sadhanala, Adv. Mater. 29, 1604744 (2017).Google Scholar
  57. 57.
    X. Fang, K. Zhang, Y. Li, L. Yao, Y. Zhang, Y. Wang, W. Zhai, L. Tao, H. Du, and G. Ran, Appl. Phys. Lett. 108, 071109 (2016).Google Scholar
  58. 58.
    S. Chen, Y.I. Hou, H.A. Chen, X. Tang, S. Langner, N. Li, T. Stubhan, I. Levchuk, E. Gu, A. Osvet, and C.J. Brabec, Adv. Energy Mater. 1701543, 1–8 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institut de Disseny i FabricacióUniversitat Politècnica de ValènciaValènciaSpain
  2. 2.Laboratory of Nanomaterials and Systems for Renewable Energies (LaNSER), Research and Technology Center of EnergyTechno-Park Borj-CedriaHammam-Lif, TunisTunisia

Personalised recommendations