Journal of Electronic Materials

, Volume 48, Issue 11, pp 7507–7514 | Cite as

Graphene Incorporated Nanocomposite Anode for Low Temperature SOFCs

  • Khalil Ahmad
  • M. Ashfaq Ahmad
  • Rizwan Raza
  • M. Ajaml Khan
  • Zohaib Ur Rehman
  • Ghazanfar AbbasEmail author


The current energy assets based on fossil fuel are being used extensively. Thus, the high utilization of these sources has created an alarming situation for scientists and researchers to investigate alternative energy conversion sources followed by devices. Fuel cell technology is an emerging field of research due to high efficiency and environmentally friendly energy conversion. The solid oxide fuel cell is a promising candidate as an alternative energy conversion technology. In this context, graphene incorporated composite anode materials have been synthesized by solid state reaction with anode composition Al0.1Ni0.2Zn0.7 oxides, and different amounts of 1 wt.%, 1.3 wt.%, and 1.5 wt.% graphene are then incorporated in the prepared composite material. The crystal structure and surface morphology have been analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallite sizes evaluated by XRD are found in the range of 42–56 nm followed by confirming with SEM images by line drawing. Electrical conductivity has been measured at the function of temperature from 300°C to 650°C by a direct current (DC) four-probe method and maximum value is found to be 0.53 Scm−1 at 370°C with 1.3% graphene incorporation. The maximum power density has been achieved of 375 mWcm−2 at 600°C with 1.3% graphene incorporation.


Nanocomposite low temperature SOFC anode material graphene incorporation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



COMSATS University Islamabad, Lahore Campus and Virtual University of Pakistan are highly acknowledged for facilitating to complete this research work.


  1. 1.
    S. Mumtaz, M.A. Ahmad, R. Raza, M.S. Arshad, B. Ahmed, M.N. Ashiq, and G. Abbas, Ceram. Int. 43, 14354 (2017).CrossRefGoogle Scholar
  2. 2.
    A. Ideris, E. Croiset, M. Pritzker, and A. Amin, Int. J. Hydrogen Energy 42, 23118 (2017).CrossRefGoogle Scholar
  3. 3.
    F. Hussain, G. Abbas, M.A. Ahmad, R. Raza, Z.U. Rehman, S. Mumtaz, and S. Dilshad, Ceram. Int. 45, 1077 (2019).CrossRefGoogle Scholar
  4. 4.
    J.J. Baschuk and L. Xianguo, Int. J. Energy Res. 25, 695 (2001).CrossRefGoogle Scholar
  5. 5.
    E. Guk, V. Venkatesan, Y. Sayan, L. Jackson, and J.S. Kim, Sci. Rep. 9, 2161 (2019).CrossRefGoogle Scholar
  6. 6.
    S. Suda, M. Itagaki, E. Node, S. Takahashi, M. Kawano, H. Yoshida, and T. Inagaki, J. Eur. Ceram. Soc. 26, 593 (2006).CrossRefGoogle Scholar
  7. 7.
    M.A. Khan, C. Xu, Z. Song, R. Raza, M.A. Ahmad, G. Abbas, and B. Zhu, Int. J. Hydrogen Energy 43, 6310 (2018).CrossRefGoogle Scholar
  8. 8.
    Y.P. Fu, S.B. Wen, and C.H. Lu, J. Am. Ceram. Soc. 91, 127 (2008).CrossRefGoogle Scholar
  9. 9.
    X. Fang, G. Zhu, C. Xia, X. Liu, and G. Meng, Solid State Ion. 168, 31 (2004).CrossRefGoogle Scholar
  10. 10.
    C. Yang, Z. Yang, C. Jin, G. Xiao, F. Chen, and M. Han, Adv. Mater. 24, 1439 (2012).CrossRefGoogle Scholar
  11. 11.
    Z. Yang, N. Xu, M. Han, and F. Chen, Int. J. Hydrogen Energy 39, 7402 (2014).CrossRefGoogle Scholar
  12. 12.
    Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong, Y. Zhang, and K. Świerczek, ACS Nano 10, 8660 (2016).CrossRefGoogle Scholar
  13. 13.
    J. Liu, A. Cao, J. Si, L. Zhang, Q. Hao, and Y. Liu, NANO 11, 1650118 (2016).CrossRefGoogle Scholar
  14. 14.
    T. Gan, G. Ding, X. Zhi, L. Fan, N. Hou, X. Yao, Y. Zhao, and Y. Li, Catal. Today. 327, 220 (2019).CrossRefGoogle Scholar
  15. 15.
    Y. Yang, Z. Yang, Y. Chen, F. Chen, and S. Peng, J. Electrochem. Soc. 166, 109 (2019).CrossRefGoogle Scholar
  16. 16.
    J.B. Goodenough and Y.H. Huang, J. Power Sources 173, 1 (2007).CrossRefGoogle Scholar
  17. 17.
    B. Zhu, X. Liu, P. Zhou, X. Yang, Z. Zhu, and W. Zhu, Electrochem. Commun. 3, 566 (2001).CrossRefGoogle Scholar
  18. 18.
    C. Xia and M. Liu, Adv. Mater. 14, 521 (2002).CrossRefGoogle Scholar
  19. 19.
    A. Rifau, Z. Zainal, D. Mutharasu, A. Fauzi, Y. Kiros, B. Zhu, and R. Zanzi Vigouroux, Am. J. Appl. Sci. 3, 2020 (2006).CrossRefGoogle Scholar
  20. 20.
    T. Jardiel, M.T. Caldes, F. Moser, J. Hamon, G. Gauthier, and O. Joubert, Solid State Ion. 181, 894 (2010).CrossRefGoogle Scholar
  21. 21.
    Z. Gong, W. Sun, Z. Jin, L. Miao, and W. Liu, ACS Appl. Energy Mater. 1, 3521 (2018).CrossRefGoogle Scholar
  22. 22.
    C.E.E. Rao, A.E. Sood, K.E. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009).CrossRefGoogle Scholar
  23. 23.
    M.J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev. 110, 132 (2009).CrossRefGoogle Scholar
  24. 24.
    L. Zhang, G. Zhang, H.B. Wu, L. Yu, and X.W. Lou, Adv. Mater. 25, 2589 (2013).CrossRefGoogle Scholar
  25. 25.
    Y. Sun, X. Wang, B. Tang, J. Ban, Y. He, W. Huang, W. Huang, C. Tao, H. Luo, and J. Sun, Mater. Lett. 189, 54 (2017).CrossRefGoogle Scholar
  26. 26.
    B. Zheng, J. Wang, F.B. Wang, and X.H. Xia, J. Mater. Chem. 2, 9079 (2014).CrossRefGoogle Scholar
  27. 27.
    B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, and S. Koller, J. Power Sources 196, 2889 (2011).CrossRefGoogle Scholar
  28. 28.
    Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhao, F. Li, and H.M. Cheng, ACS Nano 4, 3187 (2010).CrossRefGoogle Scholar
  29. 29.
    E. Pollak, B. Geng, K.J. Jeon, I.T. Lucas, T.J. Richardson, F. Wang, and R. Kostecki, Nano Lett. 10, 3386 (2010).CrossRefGoogle Scholar
  30. 30.
    E. Antolini, Mater. Chem. Phys. 78, 563 (2003).CrossRefGoogle Scholar
  31. 31.
    Y. Jee, A. Karimaghaloo, A.M. Andrade, H. Moon, Y. Li, J.W. Han, S. Ji, H. Ishihara, P.C. Su, S.W. Cha, and V. Tung, C. Fuel Cells 17, 344 (2017).CrossRefGoogle Scholar
  32. 32.
    Y. Jee, H. Moon, M.H. Lee, Meeting Abstracts the Electrochemical Society. 5, 352 (2013).Google Scholar
  33. 33.
    A.C.H. Tsang, H.Y.H. Kwok, and D.Y.C. Leung, Solid State Ion. 67, A1 (2017).Google Scholar
  34. 34.
    A. Sinha, D.N. Miller, and J.T.S. Irvine, J. Mater. Chem. A. 4, 11117 (2016).CrossRefGoogle Scholar
  35. 35.
    D. Marinha and M. Belmonte, J. Eur. Ceram. Soc. 39, 389 (2019).CrossRefGoogle Scholar
  36. 36.
    F. Jiang, Y. Yu, Y. Wang, A. Feng, and L. Song, Mater. Lett. 200, 39 (2017).CrossRefGoogle Scholar
  37. 37.
    C. Xu, X. Wu, J. Zhu, and X. Wang, Carbon 2, 386 (2008).CrossRefGoogle Scholar
  38. 38.
    D. Cai and M. Song, J. Mater. Chem. 17, 3678 (2007).CrossRefGoogle Scholar
  39. 39.
    G. Abbas, R. Raza, M. Ashfaq, M.A. Chaudhry, A. Khan, I. Ahmad, and B. Zhu, Int. J. Energy Res. 38, 518 (2014).CrossRefGoogle Scholar
  40. 40.
    M.J. Hussain, R. Raza, M. Ahmad, A. Ali, I. Ahmad, W.A. Syed, and G. Abbas, Int. J. Mod. Phys. B 30, 1650161 (2016).CrossRefGoogle Scholar
  41. 41.
    N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, A review. Prog. Mater Sci. 72, 141 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsCOMSATS University Islamabad, Lahore CampusLahorePakistan
  2. 2.Center for Fuel Cell Innovation, School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  3. 3.Departments of PhysicsVirtual University of PakistanLahorePakistan

Personalised recommendations