Advertisement

AlN/GaN HEMT with Gate Insulation and Current Collapse Suppression Using Thermal ALD ZrO2

  • Fan Chen
  • Lin-Qing ZhangEmail author
  • Peng-Fei Wang
Article
  • 1 Downloads

Abstract

In this letter, we report the device characteristics of AlN/GaN MIS-HEMT on silicon substrate using thermal atomic-layer-deposition (ALD) ZrO2 with various thicknesses. The thermal ALD ZrO2 thin film is deposited at 250°C, which avoids plasma enhancement during the fabrication process. From the transmission electron microscopy results, it is found that the alloy penetrates to the 2DEG region to form a carrier conductive pathway which facilitates the ohmic contact formation. The optimized 7 nm-thick ZrO2 AlN/GaN MIS-HEMT exhibits improved Ion/Ioff ratio and suppressed current collapse degradation, compared with 4 nm-thick ZrO2 AlN/GaN MIS-HEMT and Schottky gate AlN/GaN HEMT (SG-HEMT). In addition, as compared to SG-HEMT, reverse gate leakage current can be reduced by about six orders and forward gate bias extends to + 6.3 V with 7 nm-thick ZrO2 AlN/GaN MIS-HEMT.

Keywords

HEMT ALD ZrO2 passivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank Y. P. Wang, B. Zhu S. X. Zhao, Z. Liu and Z.Y Su for the technical support on device fabrications. This work was supported in part by the National Science and Technology Major Project of China under Grant 2013ZX02308004, the Doctoral Scientific Research Start-Up Foundation of Henan Normal University under Grant 5101239170008 and in part by Key Laboratory of Optoelectronic Sensing Integrated Application of Hennan Province.

References

  1. 1.
    T. Zimmermann, D. Deen, Y. Cao, J. Simon, P. Fay, D. Jena, and H.G. Xing, IEEE Electron Device Lett. 29, 661 (2008).CrossRefGoogle Scholar
  2. 2.
    A.L. Corrion, K. Shinohara, D. Regan, I. Milosavljevic, P. Hashimoto, P.J. Willadsen, A. Schmitz, D.C. Wheeler, C.M. Butler, S.D. Burnham, and M. Micovic, IEEE Electron Device Lett. 31, 1116 (2010).CrossRefGoogle Scholar
  3. 3.
    H. Sun, A.R. Alt, H. Benedickter, E. Feltin, J.-F. Carlin, M. Gonschorek, N.R. Grandjean, and C.R. Bolognesi, IEEE Electron Device Lett. 31, 957 (2010).CrossRefGoogle Scholar
  4. 4.
    A.L. Corrion, K. Shinohara, D. Regan, I. Milosavljevic, P. Hashimoto, P.J. Willadsen, A. Schmitz, S.J. Kim, C.M. Butler, D. Brown, S.D. Burnham, and M. Micovic, IEEE Electron Device Lett. 32, 1062 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Shinohara, A. Corrion, D. Regan, I. Milosavljevic, D. Brown, S. Burnham, P. J. Willadsen, C. Butler, A. Schmitz, D. Wheeler, A. Fung, and M. Micovic, Tech. Dig-Int. Electron Devices Meet. 10, 672 (2010).Google Scholar
  6. 6.
    Y. Cao and D. Jena, Appl. Phys. Lett. 90, 182112 (2007).CrossRefGoogle Scholar
  7. 7.
    I.P. Smorchkova, S. Keller, S. Heikman, C.R. Elsass, B. Heying, P. Fini, J.S. Speck, and U.K. Mishra, Appl. Phys. Lett. 77, 3998 (2000).CrossRefGoogle Scholar
  8. 8.
    A. Bairamis, C. Zervos, A. Adikimenakis, A. Kostopoulos, M. Kayambaki, K. Tsagaraki, G. Konstantinidis, and A. Georgakilas, Appl. Phys. Lett. 105, 113508 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Meyer, D.A. Deen, D.F. Storm, M.G. Ancona, D.S. Katzer, R. Bass, J.A. Roussos, B.P. Downey, S.C. Binari, T. Gougousi, T. Paskova, E.A. Preble, and K.R. Evans, IEEE Electron Device Lett. 34, 199 (2013).CrossRefGoogle Scholar
  10. 10.
    F. Medjdoub, M. Zegaoui, N. Rolland, and P.A. Rolland, Appl. Phys. Lett. 98, 223502 (2011).CrossRefGoogle Scholar
  11. 11.
    L. Zhang and P. Wang, Jpn. J. Appl. Phys. 57, 096502 (2018).CrossRefGoogle Scholar
  12. 12.
    D.A. Deen, D.F. Storm, R. Bass, D.J. Meyer, D.S. Katzer, S.C. Binari, J.W. Lacis, and T. Gougousi, Appl. Phys. Lett. 98, 023506 (2011).CrossRefGoogle Scholar
  13. 13.
    J.M. Tirado, J.L. Sanchez-Rojas, and J.I. Izpura, IEEE Trans. Electron Devices 54, 410 (2007).CrossRefGoogle Scholar
  14. 14.
    X. Liu, S. Zhao, L. Zhang, H. Huang, J. Shi, C. Zhang, H. Lu, P. Wang, and W. Zhang, Nanoscale Res. Lett. 10, 109 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Taking, D. MacFarlane, and E. Wasige, I.E.E.E. Trans. Electron Devices 58, 1418 (2011).Google Scholar
  16. 16.
    D.A. Deen, D.F. Storm, D.J. Meyer, D.S. Katzer, R. Bass, S.C. Binari, and T. Gougousi, Phys. Status Solidi C 8, 2420 (2011).CrossRefGoogle Scholar
  17. 17.
    D.A. Deen, S.C. Binari, D.F. Storm, D.S. Katzer, J.A. Roussos, J.C. Hackley, and T. Gougousi, Electron. Lett. 45, 423 (2009).CrossRefGoogle Scholar
  18. 18.
    T. Huang, X. Zhu, K. Wong, and K.M. Lau, IEEE Electron Device Lett. 33, 212 (2012).CrossRefGoogle Scholar
  19. 19.
    M. Higashiwaki, T. Mimura, and T. Matsui, IEEE Electron Device Lett. 27, 719 (2006).CrossRefGoogle Scholar
  20. 20.
    S. Seo, E. Cho, and D. Pavlidis, Electron. Lett. 44, 1428 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Xiao, X. Duan, J. Zhang, and Y. Hao, IEEE Electron Device Lett. 39, 719 (2018).CrossRefGoogle Scholar
  22. 22.
    L. He, F. Yang, L. Li, Z. Chen, Z. Shen, Y. Zheng, Y. Yao, Y. Ni, D. Zhou, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, I.E.E.E. Trans. Electron Devices 64, 1554 (2017).Google Scholar
  23. 23.
    K. Balachander, S. Arulkumaran, H. Ishikawa, K. Baskar, and T. Egawa, Phys. Status Solidi A 202, R16 (2005).CrossRefGoogle Scholar
  24. 24.
    S. Rai, V. Adivarahan, N. Tipirneni, A. Koudymov, J. Yang, G. Simin, and M.A. Khan, Jpn. J. Appl. Phys. Part 1 45, 4985 (2006).CrossRefGoogle Scholar
  25. 25.
    J. Kuzmik, G. Pozzovivo, S. Abermann, J.F. Carlin, M. Gonschorek, E. Feltin, N. Grandjean, E. Bertagnolli, G. Strasser, and D. Pogany, IEEE Trans. Electron Devices 55, 937 (2008).CrossRefGoogle Scholar
  26. 26.
    S. Abermann, G. Pozzovivo, J. Kuzmik, C. Ostermaier, C. Henkel, O. Bethge, G. Strasser, D. Pogany, J.F. Carlin, N. Grandjean, and E. Bertagnolli, IEEE Electron Lett. 45, 570 (2009).CrossRefGoogle Scholar
  27. 27.
    G. Ye, H. Wang, S. Arulkumaran, G.I. Ng, R. Hofstetter, Y. Li, M.J. Anand, K.S. Ang, Y.K.T. Maung, and S.C. Foo, Appl. Phys. Lett. 103, 142109 (2013).CrossRefGoogle Scholar
  28. 28.
    M. Hatano, Y. Taniguchi, S. Kodama, H. Tokuda, and M. Kuzuhara, Appl. Phys. Express 7, 044101 (2014).CrossRefGoogle Scholar
  29. 29.
    T.J. Anderson, V.D. Wheeler, D.I. Shahin, M.J. Tadjer, A.D. Koehler, K.D. Hobart, A. Christou, F.J. Kub, and C.R. Eddy Jr., Appl. Phys. Express 9, 071003 (2016).CrossRefGoogle Scholar
  30. 30.
    M. Ťapajna, J. Kuzmík, K. ČiČo, D. Pogany, G. Pozzovivo, G. Strasser, S. Abermann, E. Bertagnolli, J.-F. Carlin, N. Grandjean, and K. Fröhlich, Jpn. J. Appl. Phys. Part 1 48, 090201 (2009).CrossRefGoogle Scholar
  31. 31.
    D. Gregusova, K. Husekova, R. Stoklas, M. Blaho, M. Jurkovic, J.-F. Carlin, N. Grandjean, and P. Kordos, Jpn. J. Appl. Phys. Part 1 52, 08JN07 (2013).CrossRefGoogle Scholar
  32. 32.
    H. Jiang, C.W. Tang, and K.M. Lau, IEEE Electron Device Lett. 39, 405 (2018).CrossRefGoogle Scholar
  33. 33.
    L. Zhang, J. Shi, H. Huang, X. Liu, S. Zhao, P. Wang, and W. Zhang, IEEE Electron Device Lett. 36, 896 (2015).CrossRefGoogle Scholar
  34. 34.
    Y. Li, G.I. Ng, S. Arulkumaran, G. Ye, C. Kumar, M.J. Anand, and Z. Liu, Appl. Phys. Express 8, 041001 (2015).CrossRefGoogle Scholar
  35. 35.
    A. Fontserè, A. Pérez-Tomás, M. Placidi, J. Llobet, N. Baron, S. Chenot, Y. Cordier, J.C. Moreno, P.M. Gammon, M.R. Jennings, M. Porti, A. Bayerl, M. Lanza, and M. Nafría, Appl. Phys. Lett. 99, 213504 (2011).CrossRefGoogle Scholar
  36. 36.
    L. Wang, F.M. Mohammed, and I. Adesida, J. Appl. Phys. 103, 93516 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of ASIC and System, School of MicroelectronicsFudan UniversityShanghaiChina
  2. 2.College of Electronic and Electrical EngineeringHenan Normal UniversityXinxiangChina

Personalised recommendations