Advertisement

On the Dielectric Study and AC Conductivity Measurements of Quaternary Se-Te-Ge-Pb Nano-chalcogenide Alloys

  • Neha Sharma
  • Balbir Singh PatialEmail author
  • Nagesh Thakur
Article
  • 3 Downloads

Abstract

In the present study, quaternary (Se80Te20)94−xGe6Pbx (x = 0, 2, 4 and 6) glassy alloys were prepared using melt-quench technique. Investigation of dielectric properties, i.e. measurements of the real part of the dielectric constant, the imaginary part of the dielectric constant (dielectric loss) and alternating current (AC) conductivity measurements, were made in the frequency variation between 1 Hz and 1 MHz and at temperatures ranging from 300 K to 380 K. The dielectric constant, dielectric loss and AC conductivity show temperature and frequency dependence. AC conductivity was found to obey the power law (ωs where s ≤ 1). The obtained results are explained by using a correlated barrier-hopping model. The compositional dependence of the investigated parameters is discussed in detail to derive the best possible composition.

Keywords

Nano-chalcogenide glass dielectric constant and dielectric loss AC conductivity activation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    B.S. Patial, Neha, J. Prakash, R. Kumar, S.K. Tripathi, and N. Thakur, J. Nano Electron. Phys. 5, 02019 (2013).Google Scholar
  2. 2.
    N. Sharma, B.S. Patial, and N. Thakur, Appl. Phys. A 122, 209 (2016).CrossRefGoogle Scholar
  3. 3.
    A. Sharma and N. Mehta, RSC Adv. 7, 19085 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Rogalski, Opto Electron. 20, 279 (2012).Google Scholar
  5. 5.
    R. Soref, Nat. Photon. 4, 495 (2010).CrossRefGoogle Scholar
  6. 6.
    P. Werle, F. Slemer, K. Maurer, R. Kormann, R. Mucke, and B. Janker, Opt. Lasers Eng. 37, 101 (2002).CrossRefGoogle Scholar
  7. 7.
    H.F. Haman, M. O’Boyle, Y.C. Martin, M. Rooks, and H.K. Wickramasinghe, Nat. Mater. 5, 383 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Wutting and N. Yamada, Nat. Mater. 6, 824 (2007).CrossRefGoogle Scholar
  9. 9.
    D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wutting, Nat. Mater. 7, 972 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Mokni, A. Kahouli, F. Jomni, J.L. Garden, E. Andre, and A. Stlvestre, J. Phys. Chem. A 119, 9210 (2015).CrossRefGoogle Scholar
  11. 11.
    N. Mehta, J. Sci. Ind. Res. 65, 777 (2006).Google Scholar
  12. 12.
    N. Mehta and A. Kumar, Recent Pat. Mater. Sci. 6, 59 (2013).CrossRefGoogle Scholar
  13. 13.
    J.E. Johnson, S.J. Benight, R. Barnes, and B.H. Robinson, J. Phys. Chem. B 119, 5240 (2015).CrossRefGoogle Scholar
  14. 14.
    N. Sharma, B.S. Patial, and N. Thakur, Indian J. Pure Appl. Phys. 56, 128 (2018).Google Scholar
  15. 15.
    A. Thakur, B.S. Patial, and N. Thakur, J. Electron. Mater. 46, 1516 (2017).CrossRefGoogle Scholar
  16. 16.
    A.W. Smith, Appl. Opt. 13, 795 (1974).CrossRefGoogle Scholar
  17. 17.
    T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyana, S. Furukawa, K. Nagata, and S. Nakumura, J. Appl. Phys. 28, 123 (1989).CrossRefGoogle Scholar
  18. 18.
    R.D. Schaller and V.I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).CrossRefGoogle Scholar
  19. 19.
    I.S. Yahia, N.A. Hegab, A.M. Shakra, and A.M. AL-Ribaty, Physica B 407, 2476 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Pollak and G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972).CrossRefGoogle Scholar
  21. 21.
    A.C. Warren and J.C. Male, Electron. Lett. 6, 567 (1970).CrossRefGoogle Scholar
  22. 22.
    M.H. Cohen, H. Fritzsche, and S. Ovshinsky, Phys. Rev. Lett. 22, 1065 (1969).CrossRefGoogle Scholar
  23. 23.
    N. Sharma, B.S. Patial, P. Sharma, and N. Thakur, J. Optoelectron. Adv. Mater. 20, 435 (2018).Google Scholar
  24. 24.
    N.A. Hegab, M.A. Afifi, H.E. Atiya, and A.S. Farid, J. Alloys Compnd. 477, 925 (2009).CrossRefGoogle Scholar
  25. 25.
    M. Barsoum, Fundamentals of Ceramics (New York: McGraw-Hill, 1997), p. 543.Google Scholar
  26. 26.
    V.Q. Nguyen, J.S. Sanghera, I.K. Lloyd, I.D. Aggrawal, and D. Gershon, Non Cryst. Solids 276, 151 (2000).CrossRefGoogle Scholar
  27. 27.
    J. Sharma and S. Kumar, Indian J. Pure Appl. Phys. 49, 483 (2011).Google Scholar
  28. 28.
    L.J. Pauling, Nature of the Chemical Bond (New York: Cornell University Press, 1960).Google Scholar
  29. 29.
    S. Suresh and C. Arunseshan, Appl. Nanosci. 4, 179 (2014).CrossRefGoogle Scholar
  30. 30.
    S.C. Aggrawal, S. Guha, and K.L. Narashimhan, J. Non Cryst. Solids 18, 429 (1975).CrossRefGoogle Scholar
  31. 31.
    I.G. Austin and N.F. Mott, J. Adv. Phys. 50, 757 (2010).CrossRefGoogle Scholar
  32. 32.
    J.C. Guintini and J.V. Zancheha, J. Non Cryst. Solids 34, 419 (1979).CrossRefGoogle Scholar
  33. 33.
    S.R. Elliot, Adv. Phys. 36, 135 (1987).CrossRefGoogle Scholar
  34. 34.
    J. Sharma and S. Kumar, Turk. J. Phys. 35, 349 (2011).Google Scholar
  35. 35.
    J.C. Guintini, J.V. Zanchetta, D. Jullen, R. Eholle, and P. Hoenou, J. Non Cryst. Solids 45, 57 (1981).CrossRefGoogle Scholar
  36. 36.
    J.M. Stevels, Handbuch der Physik, ed. S. Flugge (Berlin: Springer, 1975), p. 350.Google Scholar
  37. 37.
    I.H. Khudayer, IJCET 4, 495 (2014).Google Scholar
  38. 38.
    B. Lal, S.K. Khosa, R. Tickoo, K.K. Bamzai, and P.N. Kotru, Mater. Chem. Phys. 83, 158 (2004).CrossRefGoogle Scholar
  39. 39.
    S.R. Elliot, Phillos. Mag. B 36, 1291 (1977).CrossRefGoogle Scholar
  40. 40.
    K. Shimakawa, Phillos. Mag. B 46, 123 (1982).CrossRefGoogle Scholar
  41. 41.
    N. Chandel, N. Mehta, and A. Kumar, Curr. Appl. Phys. 12, 405 (2012).CrossRefGoogle Scholar
  42. 42.
    N.A. Hegab, M.A. Afifi, H.E. Atyia, and M.I. Ismael, Acta Phys. Pol. A 119, 416 (2011).CrossRefGoogle Scholar
  43. 43.
    A.M. Shakra, A.S. Farid, N.A. Hegab, M.A. Afifi, and A.M. Alrebati, Appl. Phys. A 122, 852 (2016).CrossRefGoogle Scholar
  44. 44.
    C.A. Angell, Annu. Rev. Phys. Chem. 43, 693 (1992).CrossRefGoogle Scholar
  45. 45.
    A. Thakur, B.S. Patial, S. Bhardwaj, A.M. Awasthi, and N. Thakur, Physica B 523, 52 (2017).CrossRefGoogle Scholar
  46. 46.
    B.S. Patial, N. Thakur, and S.K. Tripathi, Thermochim. Acta 513, 1 (2011).CrossRefGoogle Scholar
  47. 47.
    R.T. Sanderson, Inorganic Chemistry (New Delhi: East-West Press, 1971).Google Scholar
  48. 48.
    A. Ravagli, M. Naftaly, C. Craig, E. Weatherby, and D.W. Hewak, Opt. Mater. 69, 339 (2017).CrossRefGoogle Scholar
  49. 49.
    J. Sharma and S. Kumar, Phys. B 407, 457 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsH.P. UniversitySummer Hill, ShimlaIndia
  2. 2.State Project Directorate, Rashtriya Uchchatar Shiksha Abhiyan (RUSA)Directorate of Higher EducationShimlaIndia
  3. 3.Department of PhysicsGovernment College SunniShimlaIndia

Personalised recommendations