Advertisement

Effect of Concentration of Single-Wall Carbon Nanotubes (SWCNTs) in a SWCNTs/ZnO Nanorods Channel-Based Thin-Film Transistor

  • Hamid LatifEmail author
  • Saba Rasheed
  • Abdul Sattar
  • M. Shahid Rafique
  • S. Zaheer
  • Arsalan Usman
  • Mahroze Munam
  • Ayesha Imtiaz
Article
  • 2 Downloads

Abstract

Fabrication of three thin-film transistor devices by deposition of single-walled carbon nanotubes (SWCNTs) thin film over hydrothermally grown nanorods of zinc oxide (ZnO) on silicon dioxide (SiO2) layered n-type silicon is reported. In this architecture, SWCNTs/ZnO nanorods were used for the channel layer. The silicon dioxide deposited over silicon substrate was used as a dielectric. Three devices were prepared by varying the concentration of carbon nanotubes to investigate the effect on electrical properties of prepared thin-film transistors. XRD and EDX analysis was performed for the study of structural and elemental properties. Scanning electron microscopy (SEM) was used to examine the surface morphology of SWCNTs/ZnO nanorods. Transfer and output characteristics were studied using a Keithley SourceMeter. IV analysis revealed that an increase in the concentration of carbon nanotubes increased the mobility values and Ion/Ioff, but the threshold voltage was decreased.

Keywords

Carbon nanotubes thin-film transistors ZnO nanorods  nano-composites channel layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    B. Mahar, C. Laslau, R. Yip, and Y. Sun, IEEE Sens. J. 7, 266 (2007).CrossRefGoogle Scholar
  2. 2.
    M. Xiao, S. Liang, J. Han, D. Zhong, J. Liu, Z. Zhang, and L. Peng, ACS Sens. 3, 749 (2018).CrossRefGoogle Scholar
  3. 3.
    C. Wang, J.C. Chien, K. Takei, T. Takahashi, J. Nah, A.M. Niknejad, and A. Javery, Nano Lett. 12, 1527 (2012).CrossRefGoogle Scholar
  4. 4.
    K. Zhu, Y. Wu, and M. Zhang, in Proceedings of the 15 th IEEE International Conference on Nanotechnology, 2015, p 897–900.Google Scholar
  5. 5.
    Y. Wu, X. Lin, and M.J. Zhang, Nanomater 2013, 64 (2013).Google Scholar
  6. 6.
    X. Liu, C. Wang, and B. Cai, Nano Lett. 12, 3596 (2012).CrossRefGoogle Scholar
  7. 7.
    L.M. Peng, Z. Zhang, and S. Wang, Mater. Today 17, 433 (2014).CrossRefGoogle Scholar
  8. 8.
    K. Bikshalu, K.S.V. Reddy, S.C.P. Reddy, and V.K. Rao, Mater. Today Proc. 2, 4457 (2015).CrossRefGoogle Scholar
  9. 9.
    Y.K. Park, W.Y. Rho, T. Mahmoudi, and Y.B. Hanhn, Chem. Commun. 50, 1050 (2014).Google Scholar
  10. 10.
    F. Hennrich, W. Li, R. Fischer, S. Lebedkin, R. Krupke, and M.M. Kappes, ACS Nano 10, 1888 (2016).CrossRefGoogle Scholar
  11. 11.
    L. Minati, G. Speranza, I. Bernagozzi, S. Torrengo, L. Toniutti, B. Rossi, M. Ferrari, and A. Chiasera, J. Phys. Chem. C 114, 11068 (2010).CrossRefGoogle Scholar
  12. 12.
    P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, and C. Zhou, Nano Lett. 11, 5301 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. Ono, S. Kishimoto, Y. Ohno, and T. Mizutani, Nanotechnolgy 21, 205202 (2010).CrossRefGoogle Scholar
  14. 14.
    B. Chen, P. Zhang, L. Ding, J. Han, S. Qiu, Q. Li, Z. Zhang, and L.M. Peng, Nano Lett. 16, 5301 (2016).Google Scholar
  15. 15.
    S. Gupta, C.N. Murthy, and C.R. Prabha, Int. J. Bio. Macromol. 108, 687 (2018).CrossRefGoogle Scholar
  16. 16.
    N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang, Sens. Actuators B 207, 690 (2015).CrossRefGoogle Scholar
  17. 17.
    F. Liu, J. Sun, C. Qian, X. Hu, H. Wu, Y. Huang, and J. Yang, Appl. Phys. A 122, 841 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Kumar, K. Bhargava, T. Dixit, K. Bhargava, I.A. Palani, and V. Singh, J. Mater. Sci. Mater. Electron. 28, 11202 (2017).CrossRefGoogle Scholar
  19. 19.
    P.P. Pal, E. Gilshteyn, H. Jiang, M. Timmermans, A. Kaskela, O.V. Tolochoko, M. Karppinen, M. Nisula, E.I. Kauppinen, and A.G. Nasibulin, Nanotechnology 27, 485709 (2016).CrossRefGoogle Scholar
  20. 20.
    X. Liu, C. Wang, X. Xiao, J. Wang, S. Guo, and C. Jiang, App. Phys. Lett. 103, 223108 (2013).CrossRefGoogle Scholar
  21. 21.
    A. Kumar, K. Bhargava, T. Dixit, I.A. Palani, and V. Singh, J. Electron. Mater. 45, 5606 (2016).CrossRefGoogle Scholar
  22. 22.
    M. Fathollahzadeh, M. Hosseini, M. Norouzi, A. Ebrahimi, M. Fathipour, M. Kolahdouz, and B. Haghighi, J. Solid State Electrochem. 22, 61 (2017).CrossRefGoogle Scholar
  23. 23.
    J. Lee, T. Park, J. Lee, and W. Yi, IEEE Sens. J. 15, 260 (2015).CrossRefGoogle Scholar
  24. 24.
    Y. Li, J. Gong, M. McCune, G. Hea, and Y. Deng, Synth. Metals 160, 499 (2010).CrossRefGoogle Scholar
  25. 25.
    E.S. Ates, S. Kucukyildiz, and H.E. Unalan, ACS Appl. Mater. Interfaces 4, 5142 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Kumar, H. Jeong, and D. Lee, J. Mater. Sci. Mater. Electron. 29, 13058 (2018).CrossRefGoogle Scholar
  27. 27.
    G.H. Shen, A.R. Tandio, and F.C. Hong, Thin Solid Films 618, 100 (2016).CrossRefGoogle Scholar
  28. 28.
    Y. Wu, M. Zhang, X. Xiao, and S. Zhang, in 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, 2014, p 1–2.Google Scholar
  29. 29.
    Y. Cong, D. Han, J. Dong, S. Zhang, X. Zhang, and Y. Wang, Sci. Rep. 7, 1497 (2017).CrossRefGoogle Scholar
  30. 30.
    N.A. Azarova, J.W. Owen, C.A. McLellan, M.A. Grimminger, E.K. Chapman, J.E. Anthony, and O.D. Jurchescu, Org. Electron. 11, 1960 (2010).CrossRefGoogle Scholar
  31. 31.
    B. Kim, M.L. Geier, M.C. Hersam, and A. Dodabalapur, Sci. Rep. 7, 39627 (2017).CrossRefGoogle Scholar
  32. 32.
    E.A. Villegas, C.M. Aldao, R. Savu, L.A. Ramajo, and R. Parra, Phys. Status Solidi A 215, 1800107 (2018).CrossRefGoogle Scholar
  33. 33.
    H. Yan, Y. Mochizuki, T. Jo, and H. Okuzaki, J. Bioequiv Availab. 3, 069 (2011).CrossRefGoogle Scholar
  34. 34.
    M. Magliulo, B.R. Pistillo, M.Y. Mulla, S. Cotrone, N. Ditaranto, N. Cioffi, P. Favia, and L. Torsi, Plasma Process Polym. 10, 102 (2013).CrossRefGoogle Scholar
  35. 35.
    B. Sun and H. Sirringhaus, Nano Lett. 5, 2408 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsForman Christian CollegeLahorePakistan
  2. 2.Department of PhysicsCOMSATS Institute of Information TechnologyLahorePakistan
  3. 3.Department of PhysicsUniversity of Engineering and TechnologyLahorePakistan
  4. 4.Department of ChemistryGovernment College UniversityLahorePakistan

Personalised recommendations