Advertisement

Thickness Dependence of Optoelectronic Properties of Molybdenum Diselenide-Based Nanodevices

  • Mohamed Malik Achouri
  • Abdelkader Tab
  • Abdelkader Abderrahmane
  • Dong Jin Lee
  • Jong-Min Oh
  • Nam-Hoon Kim
  • Pil Ju KoEmail author
Article
  • 3 Downloads

Abstract

Two-dimensional molybdenum diselenide (MoSe2) has application potential in optical and optoelectronic devices. In this study, we fabricated field-effect transistors based on two-dimensional MoSe2 flakes and investigated the effect of flake thickness on the optoelectronic properties of the devices. An increase in MoSe2 flake thickness caused an enhancement in the optoelectronic performance of the device under 532 nm laser illumination. The thickest MoSe2 flake-based device showed the highest photoresponsivity of approximately 753 A W−1, and the external quantum efficiency and specific detectivity of the device were 175.891%, and 2.8 × 1011 cm Hz1/2 W−1, respectively. The prepared two-dimensional MoSe2 flakes exhibited promising properties for nano-optoelectronic device applications.

Keywords

Two-dimensional (2D) materials molybdenum diselenide optoelectronic photodetector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).CrossRefGoogle Scholar
  2. 2.
    P.J. Ko, A. Abderrahmane, N. Kim, and A. Sandhu, Semicond. Sci. Technol. 32, 065015 (2017).CrossRefGoogle Scholar
  3. 3.
    J.D. Yao, Z.Q. Zheng, J.M. Shao, and G.W. Yang, Nanoscale 7, 14974 (2015).CrossRefGoogle Scholar
  4. 4.
    W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li, and A.T.S. Wee, ACS Nano 8, 8653 (2014).CrossRefGoogle Scholar
  5. 5.
    P.J. Ko, A. Abderrahmane, T. Takamura, N.-H. Kim, and A. Sandhu, Nanotechnology 27, 325202 (2016).CrossRefGoogle Scholar
  6. 6.
    A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, and K. Ariga, Bull. Chem. Soc. Jpn 90, 627 (2017).CrossRefGoogle Scholar
  7. 7.
    R. Frisenda, E. Navarro-Moratalla, P. Gant, D.P. De Lara, P. Jarillo-Herrero, R.V. Gorbachev, and A. Castellanos-Gomez, Chem. Soc. Rev. 47, 53 (2018).CrossRefGoogle Scholar
  8. 8.
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).CrossRefGoogle Scholar
  9. 9.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nano-technol. 7, 699 (2012).CrossRefGoogle Scholar
  10. 10.
    S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J.B. Li, J.C. Grossman, and J.Q. Wu, Nano Lett. 12, 5576 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Lee, J. Ahn, S. Lm, J. Kim, and W. Choi, Sci Rep. 8, 11545 (2018).CrossRefGoogle Scholar
  12. 12.
    S. Larentis, B. Fallahazad, and E. Tutuc, Appl. Phys. Lett. 101, 223104 (2012).CrossRefGoogle Scholar
  13. 13.
    X. Zhang, D. Sun, Y. Li, G.H. Lee, X. Cui, D. Chenet, Y. You, T.F. Heinz, J.C. Hone, and A.C.S. Appl, Mater. Interfaces 7, 25923 (2015).CrossRefGoogle Scholar
  14. 14.
    B. Chamlagain, Q. Li, N.J. Ghimire, H.-J. Chuang, M.M. Perera, H. Tu, Y. Xu, M. Pan, D. Xaio, J. Yan, D. Mandrus, and Z. Zhou, ACS Nano 8, 5079 (2014).CrossRefGoogle Scholar
  15. 15.
    W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, Nano Lett. 13, 1983 (2013).CrossRefGoogle Scholar
  16. 16.
    H. Liu, M. Si, S. Najmaei, A.T. Neal, Y. Du, P.M. Ajayan, J. Lou, and P.D. Ye, Nano Lett. 13, 2640 (2013).CrossRefGoogle Scholar
  17. 17.
    W. Zhang, Q. Wang, Y. Chen, and Z. Wang, Wee, Andrew T S. 2D Mater. 3, 022001 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Abderrahmane, P.J. Ko, T.V. Thu, S. Ishizawa, T. Takamura, and A. Sandhu, Nanotechnology 25, 365202 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Tongay, J. Zhou, C. Ataca, J. Liu, J.S. Kang, T.S. Matthews, L. You, J. Li, J.C. Grossman, and J. Wu, Nano Lett. 13, 2831 (2013).CrossRefGoogle Scholar
  20. 20.
    B. Munkhbat, D.G. Baranov, M. Stührenberg, M. Wersäll, A. Bisht, and T. Shegai, ACS Photonics 6, 139 (2018).CrossRefGoogle Scholar
  21. 21.
    P. Wang, S. Liu, W. Luo, H. Fang, F. Gong, N. Guo, Z.-G. Chen, J. Zou, Y. Huang, X. Zhou, J. Wang, X. Chen, W. Lu, F. Xiu, and W. Hu, Adv. Mater. 29, 1604439 (2017).CrossRefGoogle Scholar
  22. 22.
    M. Velický, M.A. Bissett, C.R. Woods, P.S. Toth, T. Georgiou, I.A. Kinloch, K.S. Novoselov, and R.A.W. Dryfe, Nano Lett. 16, 2023 (2013).CrossRefGoogle Scholar
  23. 23.
    Y. Son, Q.H. Wang, J.A. Paulson, C.-J. Shih, A.G. Rajan, K. Tvrdy, S. Kim, B. Alfeeli, R.D. Braatz, and M.S. Strano, ACS Nano 9, 2843 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Département d’ingénierieCentre de Développement des Satellites (CDS)OranAlgeria
  2. 2.Division Microélectronique et NanotechnologieCentre de Développement des Technologies Avancées (CDTA)AlgiersAlgeria
  3. 3.Laboratoire de la microscopie électronique et sciences des matériauxUniversité des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTO-MB)OranAlgeria
  4. 4.Department of Physics, Faculty of Exact Sciences and InformaticsAbdelhamid Ibn Badis UniversityMostaganemAlgeria
  5. 5.Department of Electrical EngineeringChosun UniversityGwangjuRepublic of Korea
  6. 6.Department of Electronic Materials EngineeringKwangwoon UniversitySeoulRepublic of Korea

Personalised recommendations