Advertisement

Fluorescence Emission and Ferromagnetic of Zn0.97−xNi0.03CoxS Nanorods Synthesized via a Hydrothermal Route

  • W. H. Zhao
  • Z. Q. WeiEmail author
  • Y. J. He
  • X. L. Zhu
  • X. D. Zhang
  • L. Ma
  • J. H. Liang
Article
  • 6 Downloads

Abstract

Wurtzite structure Ni and Co co-doped Zn0.97−xNi0.03CoxS (x = 0.01, 0.03 and 0.05) nanorods were successfully synthesized by a hydrothermal route with ethylenediamine. The effects of Co doping concentration on the crystal microstructure, morphology, optical and magnetic properties were systematically investigated by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectrometry (EDS), UV–visible spectra (UV–VIS), photoluminescence (PL) and a vibrating sample magnetometer (VSM). The morphology of as-prepared samples is one-dimensional wurtzite rod-like with good dispersion. It is demonstrated that the Ni and Co co-doped ZnS nanorods lead to an increased visible light absorption, slightly increased band gap, and decreased PL intensity. Blue shift of the band gap occurs in doped Zn0.97−xNi0.03CoxS nanorods. PL spectra shows an obvious ultraviolet emission peak at 375 nm and a weaker side band at 730 nm, implying the excellent single-phase ZnS. Notably, two major blue emissions band around 497 nm and 576 nm are quenched sharply with the increase of Co doping concentration. The CIE chromaticity diagram results show that the prepared Zn0.97−xNi0.03CoxS samples exhibit excellent light-emitting ability. All samples possess ferromagnetic behavior at room temperature. The saturation magnetization of Zn0.97−xNi0.03CoxS nanorods with an appropriate amount of Co decreases obviously, reaching a minimum at 3% Co.

Keywords

ZnS co-doped diluted magnetic semiconductors fluorescence ferromagnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51261015) and the open funds of State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology (No. SYSJJ2018-20).

References

  1. 1.
    X. Wang, Z. Chen, L. Zhang, M. Xu, G. Chen, B. Jiang, C. Ke, L. Zhang, and Y. Hang, J. Alloys Compd. 695, 3767 (2017).CrossRefGoogle Scholar
  2. 2.
    L. Liotta, F. Puleo, H. Wu, and X. Yin, J. Nanosci. Nanotechnol. 17, 3629 (2017).CrossRefGoogle Scholar
  3. 3.
    F. Wang, H. Yang, H. Zhang, and J. Jiang, J. Mater. Sci.: Mater. Electron. 29, 1304 (2018).Google Scholar
  4. 4.
    G.H. Yue, Y. Zhang, X.Q. Zhang, C.G. Wang, Y.C. Zhao, and D.L. Peng, Appl. Phys. A 118, 763 (2015).CrossRefGoogle Scholar
  5. 5.
    J. Jiang, X. He, J. Du, X. Pang, H. Yang, and Z. Wei, Mater. Lett. 220, 178 (2018).CrossRefGoogle Scholar
  6. 6.
    C. Zheng, H. Yang, Z. Cui, H. Zhang, and X. Wang, Nanoscale Res. Lett. 12, 608 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Steger, K. Saeedi, M.L.W. Thewalt, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, and H.-J. Pohl, Science 336, 1280 (2012).CrossRefGoogle Scholar
  8. 8.
    D.R. Khanal, J.W.L. Yim, W. Walukiewicz, and J. Wu, Nano Lett. 7, 1186 (2007).CrossRefGoogle Scholar
  9. 9.
    G.H. Yue, X. Wang, L.S. Wang, P. Chang, R.T. Wen, Y.Z. Chen, and D.L. Deng, Electrochim. Acta 54, 26 (2009).Google Scholar
  10. 10.
    G.H. Yue, W. Wang, L.S. Wang, X. Wang, P.X. Yan, Y. Chen, and D.L. Peng, J. Alloys Compd. 474, 1–2 (2009).CrossRefGoogle Scholar
  11. 11.
    G.H. Yue, D.L. Deng, P.X. Yan, L.S. Wang, W. Wang, and X.H. Luo, J. Alloys Compd. 468, 1–2 (2009).CrossRefGoogle Scholar
  12. 12.
    G.H. Yue, P.X. Yan, D. Yan, J.Z. Liu, D.M. Qu, Q. Yang, and X.Y. Fan, J. Cryst. Growth 293, 2 (2006).CrossRefGoogle Scholar
  13. 13.
    Z. Dehghani, Z. Shadrokh, and M. Nadafan, Opt. Int. J. Light Electron Opt. 131, 925 (2017).CrossRefGoogle Scholar
  14. 14.
    D. Cai, X. Yuan, D. Zhu, H. Zhou, H. Li, and J. Zhao, Mater. Res. Bull. 94, 241 (2017).CrossRefGoogle Scholar
  15. 15.
    L.-J. Tang, G.-F. Huang, Y. Tian, W.-Q. Huang, M.-G. Xia, C. Jiao, J.-P. Long, and S.-Q. Zhan, Mater. Lett. 100, 237 (2013).CrossRefGoogle Scholar
  16. 16.
    D. Amaranatha Reddy, D.H. Kim, S.J. Rhee, C.U. Jung, B.W. Lee, and C. Liu, J. Alloys Compd. 588, 596 (2014).CrossRefGoogle Scholar
  17. 17.
    B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S. Ramu, R.P. Vijayalakshmi, and S.-H. Park, Ceram. Int. 42, 8092 (2016).CrossRefGoogle Scholar
  18. 18.
    B. Poornaprakash, S. Ramu, S.-H. Park, R.P. Vijayalakshmi, and B.K. Reddy, Mater. Lett. 164, 104 (2016).CrossRefGoogle Scholar
  19. 19.
    T. Arai, S. Senda, Y. Sato, H. Takahashi, K. Shinoda, B. Jeyadevan, and K. Tohji, Chem. Mater. 20, 1997 (2008).CrossRefGoogle Scholar
  20. 20.
    D.A. Reddy, G. Murali, R.P. Vijayalakshmi, and B.K. Reddy, Appl. Phys. A 105, 119 (2011).CrossRefGoogle Scholar
  21. 21.
    D. Amaranatha Reddy, S. Sambasivam, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, Y. Aparna, B.K. Reddy, and J.L. Rao, J. Alloys Compd. 537, 208 (2012).CrossRefGoogle Scholar
  22. 22.
    G. Murugadoss, J. Lumin. 132, 2043 (2012).CrossRefGoogle Scholar
  23. 23.
    B. Poornaprakash, P.T. Poojitha, U. Chalapathi, K. Subramanyam, and S.-H. Park, Phys. E Low-Dimens. Syst. Nanostruct. 83, 180 (2016).CrossRefGoogle Scholar
  24. 24.
    M. Kimi, L. Yuliati, and M. Shamsuddin, J. Energy Chem. 25, 512 (2016).CrossRefGoogle Scholar
  25. 25.
    L. Ma and W. Chen, Nanotechnology 21, 385604 (2010).CrossRefGoogle Scholar
  26. 26.
    G. Roussos, J. Nagel, and H.-J. Schulz, Z. Für Phys. B Condens. Matter 53, 95 (1983).CrossRefGoogle Scholar
  27. 27.
    D. Gao, G. Yang, J. Zhang, Z. Zhu, M. Si, and D. Xue, Appl. Phys. Lett. 99, 052502 (2011).CrossRefGoogle Scholar
  28. 28.
    N.H. Hong, E. Chikoidze, and Y. Dumont, Phys. B Condens. Matter 404, 3978 (2009).CrossRefGoogle Scholar
  29. 29.
    M. Kapilashrami, J. Xu, V. Ström, K.V. Rao, and L. Belova, Appl. Phys. Lett. 95, 033104 (2009).CrossRefGoogle Scholar
  30. 30.
    W.-H. Zhao, Z.-Q. Wei, X.-L. Zhu, X.-D. Zhang, and J.-L. Jiang, Int. J. Mater. Res. 109, 405 (2018).CrossRefGoogle Scholar
  31. 31.
    G.H. Yue, P.X. Yan, D. Yan, J.Z. Liu, D.M. Qu, Q. Yang, and X.Y. Fan, J. Cryst. Growth 293, 428 (2006).CrossRefGoogle Scholar
  32. 32.
    Z. Deng, J. Qi, Y. Zhang, Q. Liao, and Y. Huang, Nanotechnology 18, 475603 (2007).CrossRefGoogle Scholar
  33. 33.
    S. Kar and S. Chaudhuri, Chem. Phys. Lett. 414, 40 (2005).CrossRefGoogle Scholar
  34. 34.
    X. Wang, J. Shi, Z. Feng, M. Li, and C. Li, Phys. Chem. Chem. Phys. 13, 4715 (2011).CrossRefGoogle Scholar
  35. 35.
    J.F. Suyver, S.F. Wuister, J.J. Kelly, and A. Meijerink, Nano Lett. 1, 429 (2001).CrossRefGoogle Scholar
  36. 36.
    X. Zhang, Y. Zhang, Y. Song, Z. Wang, and D. Yu, Phys. E Low-Dimens. Syst. Nanostruct. 28, 1 (2005).CrossRefGoogle Scholar
  37. 37.
    Y.-C. Zhu, Y. Bando, and D.-F. Xue, Appl. Phys. Lett. 82, 1769 (2003).CrossRefGoogle Scholar
  38. 38.
    G. Shen, Y. Bando, and D. Golberg, Appl. Phys. Lett. 88, 123107 (2006).CrossRefGoogle Scholar
  39. 39.
    S.S. Talwatkar, A.L. Sunatkari, Y.S. Tamgadge, V.G. Pahurkar, and G.G. Muley, Appl. Phys. A 118, 675 (2015).CrossRefGoogle Scholar
  40. 40.
    S.-F. Wang, G.-Z. Sun, L.-M. Fang, L. Lei, X. Xiang, and X.-T. Zu, Sci. Rep. 5, 12849 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling Nonferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouChina
  3. 3.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanChina

Personalised recommendations