Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6700–6709 | Cite as

Enhanced Thermoelectric Performance in Hf-Free p-Type (Ti, Zr)CoSb Half-Heusler Alloys

  • Nagendra S. ChauhanEmail author
  • Sivaiah BathulaEmail author
  • Bhasker Gahtori
  • Yury V. Kolen’ko
  • Ajay Dhar
Article

Abstract

High thermal conductivity and exorbitant cost of Hf has for a long time limited the prospects of half-Heusler (HH) alloys for applicability in thermoelectric (TE) energy conversion devices. This work demonstrates the implication of nanostructuring and efficacy of p-type acceptor dopant in (Ti,Zr)CoSb based HH alloys for enhancing the figure of merit (ZT) while eliminating the use of Hf. A series of (Ti,Zr)CoSb1−x(Si,Sn)x HH composition was synthesized using arc-melting and consolidated employing spark plasma sintering (SPS). The optimal doping of acceptor dopants, namely, Si and Sn significantly improves the power factor and strengthens the phonon scattering resulting in an enhanced TE performance with maximum ZT of 0.26 and 0.5 at 873 K, obtained for TiCoSb0.8Sn0.2 and ZrCoSb0.8Sn0.2, respectively. For further optimization, microstructural modifications by fine-tuning of the Ti to Zr ratio induces strain field effects and mass fluctuation in (Ti,Zr)CoSb0.8Sn0.2 compositions, which remarkably introduces additional phonon scattering resulting in maximum ZT ∼ 0.8 at 873 K for the best performing Zr0.5Ti0.5CoSb0.8Sn0.2 compound. The current study provides a better understanding of p-type dopants in HH materials by which prospective high TE performance can be obtained in low-cost Hf-free p-type (Ti,Zr)CoSb half-Heusler alloys.

Keywords

Thermoelectric p-type half-Heuslers doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge the financial support from BRNS, India (Ref No: 37(3)/14/22/2016-BRNS) and UTAP-EXPL/CTE/0050/2017. Author N.S.C. acknowledges CSIR, India (Grant no: 31/001(0430)/ 2014-EMR-1) for financial support. The technical support rendered by Mr. R. Shyam, and Mr. N. K. Upadhyay is also gratefully acknowledged.

Conflict of interest

There is no conflict of interest to declare.

Supplementary material

11664_2019_7486_MOESM1_ESM.pdf (602 kb)
Supplementary material 1 (PDF 602 kb)

References

  1. 1.
    F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).CrossRefGoogle Scholar
  2. 2.
    N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K.K. Johari, B. Gahtori, M. Saravanan, and A. Dhar, J. Phys. Chem. Solids 123, 105 (2018).CrossRefGoogle Scholar
  3. 3.
    S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scripta Mater. 66, 1073 (2012).CrossRefGoogle Scholar
  4. 4.
    N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, B. Gahtori, A. Kumar, and A. Dhar, ACS Appl. Energy Mater. 1, 757 (2018).CrossRefGoogle Scholar
  5. 5.
    N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, B. Gahtori, A.K. Srivastava, M. Saravanan, and A. Dhar, Materialia 1, 168 (2018).CrossRefGoogle Scholar
  6. 6.
    S. Chen and Z. Ren, Mater. Today 16, 387–395 (2013).CrossRefGoogle Scholar
  7. 7.
    W.G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z.M. Gibbs, C. Felser, and G.J. Snyder, Nature Reviews Materials 1, 16032 (2016).CrossRefGoogle Scholar
  8. 8.
    P. Qiu, X. Huang, X. Chen, and L. Chen, J. Appl. Phys. 106, 103703 (2009).CrossRefGoogle Scholar
  9. 9.
    V. Ponnambalam, P.N. Alboni, J. Edwards, T.M. Tritt, S.R. Culp, and S.J. Poon, J. Appl. Phys. 103, 063716 (2008).CrossRefGoogle Scholar
  10. 10.
    S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).CrossRefGoogle Scholar
  11. 11.
    N.J. Takas, M.R. Shabetai, and P.F.P. Poudeu, Sci. Adv. Mater. 3, 571–576 (2011).CrossRefGoogle Scholar
  12. 12.
    P. Maji, N.J. Takas, D.K. Misra, H. Gabrisch, K. Stokes, and P.F.P. Poudeu, J. Solid State Chem. 183, 1120–1126 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Barth, B. Balke, G.H. Fecher, H. Stryhanyuk, A. Gloskovskii, S. Naghavi, and C. Felser, J. Phys. D Appl. Phys. 42, 185401 (2009).CrossRefGoogle Scholar
  14. 14.
    C.-C. Hsu and H.-K. Ma, Mater. Sci. Eng. B 198, 80–85 (2015).CrossRefGoogle Scholar
  15. 15.
    W. Ting, W. Jiang, X. Li, Y. Zhou, and L. Chen, J. Appl. Phys. 102, 103705 (2007).CrossRefGoogle Scholar
  16. 16.
    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Jpn. J. Appl. Phys. 46, L673 (2007).CrossRefGoogle Scholar
  17. 17.
    B. Yuan, B. Wang, L. Huang, X. Lei, L. Zhao, C. Wang, and Q. Zhang, J. Electron. Mater. 46, 3076–3082 (2017).CrossRefGoogle Scholar
  18. 18.
    M. Zhou, L. Chen, C. Feng, D. Wang, and J.-F. Li, J. Appl. Phys. 101, 113714 (2007).CrossRefGoogle Scholar
  19. 19.
    C.S. Birkel, W.G. Zeier, J.E. Douglas, B.R. Lettiere, C.E. Mills, G. Seward, A. Birkel, M.L. Snedaker, Y. Zhang, and G.J. Snyder, Chem. Mater. 24, 2558 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Zhou, C. Feng, L. Chen, and X. Huang, J. Alloys Compd. 391, 194–197 (2005).CrossRefGoogle Scholar
  21. 21.
    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloys Compd. 407, 326–329 (2006).CrossRefGoogle Scholar
  22. 22.
    W. Ting, W. Jiang, X. Li, S. Bai, S. Liufu, and L. Chen, J. Alloys Compd. 467, 590–594 (2009).CrossRefGoogle Scholar
  23. 23.
    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Mater. Trans. 46, 1481–1484 (2005).CrossRefGoogle Scholar
  24. 24.
    D. Zhao, L. Wang, L. Bo, and W. Di, Metals 8, 61 (2018).CrossRefGoogle Scholar
  25. 25.
    R. He, H. Zhu, J. Sun, J. Mao, H. Reith, S. Chen, G. Schierning, K. Nielsch, and Z. Ren, Mater. Today Phys. 1, 24–30 (2017).CrossRefGoogle Scholar
  26. 26.
    N.S. Chauhan, A. Bhardwaj, T.D. Senguttuvan, R.P. Pant, R.C. Mallik, and D.K. Misra, J. Mater. Chem. C 4, 5766 (2016).CrossRefGoogle Scholar
  27. 27.
    A. Bhardwaj, N.S. Chauhan, B. Sancheti, G.N. Pandey, T.D. Senguttuvan, and D.K. Misra, Phys. Chem. Chem. Phys. 17, 30090 (2015).CrossRefGoogle Scholar
  28. 28.
    X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, and G. Chen, Nano Lett. 11, 556 (2010).CrossRefGoogle Scholar
  29. 29.
    A. Bhardwaj, N.S. Chauhan, and D.K. Misra, J. Mater. Chem. A 3, 10777 (2015).CrossRefGoogle Scholar
  30. 30.
    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloys Compd. 394, 122–125 (2005).CrossRefGoogle Scholar
  31. 31.
    N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K.K. Johari, B. Gahtori, and A. Dhar, Mater. Lett. 228, 250–253 (2018).CrossRefGoogle Scholar
  32. 32.
    R. He, H.S. Kim, Y. Lan, D. Wang, S. Chen, and Z. Ren, Rsc Adv. 4, 64711 (2014).CrossRefGoogle Scholar
  33. 33.
    N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K.K. Johari, B. Gahtori, and A. Dhar, J. Materiomics 5, 94 (2019).CrossRefGoogle Scholar
  34. 34.
    X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, and Z. Ren, Energy Environ. Sci. 5, 7543–7548 (2012).CrossRefGoogle Scholar
  35. 35.
    H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).CrossRefGoogle Scholar
  36. 36.
    B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077–2082 (2012).CrossRefGoogle Scholar
  37. 37.
    T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, in 2006 25th International Conference on Thermoelectrics, (IEEE: 2006), pp. 128–131Google Scholar
  38. 38.
    M. Zhou, L. Chen, W. Zhang, and C. Feng, J. Appl. Phys. 98, 013708 (2005).CrossRefGoogle Scholar
  39. 39.
    G.A. Slack, Physical Review 105, 829 (1957).CrossRefGoogle Scholar
  40. 40.
    B. Abeles, Physical Review 131, 1906 (1963).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia
  2. 2.Advanced Materials and Device Metrology Division, National Physical LaboratoryCouncil of Scientific and Industrial ResearchNew DelhiIndia
  3. 3.International Iberian Nanotechnology LaboratoryBragaPortugal
  4. 4.School of Minerals, Metallurgical and Materials EngineeringIndian Institute of TechnologyBhubaneswarIndia

Personalised recommendations