Advertisement

The Large and Tunable Nonlinear Absorption Response of Graphene Oxide Liquid Crystals

  • 42 Accesses

Abstract

In this work, we report on the tuning of the optical transmission properties of the graphene oxide liquid crystal. The proposed tuning method is obtained by irradiating the liquid crystal samples with 532-nm laser irradiation. For this purpose, liquid crystallinity of the graphene oxide is proved by the birefringence measurement method. Large nonlinear absorption has been observed from graphene oxide liquid crystals. Open-aperture Z-scan experiments revealed that the laser irradiation enhanced the nonlinear absorption coefficient by approximately five times in comparison with non-irradiated sample. UV–visible, Raman and Fourier transform infrared spectroscopy clearly demonstrate that graphene oxide liquid crystal is not modified by laser irradiation. This work opened up the method to control and amplify the absorption properties of graphene oxide liquid crystal.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    R.R. Shah and N.L. Abbott, Science 293, 1296 (2001).

  2. 2.

    I.-H. Lin, D.S. Miller, P.J. Bertics, C.J. Murphy, J.J. de Pablo, and N.L. Abbott, Science 332, 1297 (2011).

  3. 3.

    M. Humar and I. Musevic, Opt. Express 19, 19836 (2011).

  4. 4.

    A. Sengupta, U. Tkalec, and C. Bahr, Soft Matter 7, 6542 (2011).

  5. 5.

    D. Psaltis, S.R. Quake, and C. Yang, Nature 442, 381 (2006).

  6. 6.

    J.G. Cuennet, A.E. Vasdekis, L. De Sio, and D. Psaltis, Nat. Photonics 5, 234 (2011).

  7. 7.

    D.K. Yang and S.T. Wu, Fundamentals of Liquid Crystal Devices (New York: Wiley, 2006).

  8. 8.

    I.C. Khoo, Phys. Rep. 471, 221 (2009).

  9. 9.

    Y. Liu, Y. Wu, C.-W. Chen, J. Zhou, T.-H. Lin, and I.C. Khoo, Opt. Express 24, 10458 (2016).

  10. 10.

    A. Gowda, L. Jacob, N. Joy, R. Philip, R. Pratibha, and S. Kumar, New J. Chem. 42, 2047 (2018).

  11. 11.

    X. Wang, Y. Mi, D. Wang, W. He, H. Cao, and H. Yang, Mol. Cryst. Liq. Cryst. 630, 1 (2016).

  12. 12.

    W. Zhang, L. Zhang, X. Liang, L. Zhou, J. Xiao, L. Yu, F. Li, H. Cao, K. Li, Z. Yang, and H. Yang, Sci. Rep. 7, 1 (2017).

  13. 13.

    B.T. Hogan, E. Kovalska, M.F. Craciun, and A. Baldycheva, J. Mater. Chem. C 5, 11185 (2017).

  14. 14.

    V.A. Davis, A.N.G. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, R.D. Booker, J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W.W. Adams, R.H. Hauge, J.E. Fischer, Y. Cohen, Y. Talmon, R.E. Smalley, and M. Pasquali, Nat. Nanotechnol. 4, 830 (2009).

  15. 15.

    L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, and R.E. Smalley, Science 305, 1447 (2004).

  16. 16.

    L.-S. Li, J. Walda, L. Manna, and A.P. Alivisatos, Nano Lett. 2, 557 (2002).

  17. 17.

    S. Gupta, Q. Zhang, T. Emrick, and T.P. Russell, Nano Lett. 6, 2066 (2006).

  18. 18.

    I. Dierking and S. Al-Zangana, Nanomaterials 7, 305 (2017).

  19. 19.

    Q.B. Zheng, Z.G. Li, J.H. Yang, and J.K. Kim, Prog. Mater. Sci. 64, 200 (2014).

  20. 20.

    F. Lin, X. Tong, Y. Wang, J. Bao, and Z.M. Wang, Nanoscale Res. Lett. 10, 435 (2015).

  21. 21.

    N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D.V. Kosynkin, D. Tsentalovich, A.N.G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J.M. Tour, and M. Pasquali, Nat. Nanotechnol. 5, 406 (2010).

  22. 22.

    J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn, J.M. Yun, and S.O. Kim, Angew. Chem. Int. Ed. Engl. 50, 3043 (2011).

  23. 23.

    Z. Xu and C. Gao, ACS Nano 5, 2908 (2011).

  24. 24.

    L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, Nanoscale 7, 1616 (2015).

  25. 25.

    R.T.M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, J. Nanosci. Nanotechnol. 16, 11364 (2016).

  26. 26.

    J. Wang, Y. Hernandez, M. Lotya, J.N. Coleman, and W.J. Blau, Adv. Mater. 21, 2430 (2009).

  27. 27.

    M.B.M. Krishna, N. Venkatramaiah, R. Venkatesan, and D.N. Rao, J. Mater. Chem. 22, 3059 (2012).

  28. 28.

    X.F. Jiang, L. Polavarapu, S.T. Neo, T. Venkatesan, and Q.H. Xu, J. Phys. Chem. Lett. 3, 785 (2012).

  29. 29.

    N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, J. Phys. Chem. C 117, 6842 (2013).

  30. 30.

    N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K.S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris, Nanoscale 8, 2908 (2016).

  31. 31.

    H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, and P. Kockaert, Opt. Lett. 37, 1856 (2012).

  32. 32.

    A.B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zboril, Chem. Phys. Lett. 543, 101 (2012).

  33. 33.

    X.L. Zhang, Z.B. Liu, X. Li, Q. Ma, X. Chen, J. Tian, Y. Xu, and Y. Chen, Opt. Express 21, 7511 (2013).

  34. 34.

    J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascon, Langmuir 24, 10560 (2008).

  35. 35.

    R. Karimzadeh and A. Arandian, Laser Phys. Lett. 12, 025401 (2015).

  36. 36.

    M. Jahanbakhshian, M. Yadi, S. Adami, and R. Karimzadeh, J. Mater. Sci. Mater. Electron. 28, 13888 (2017).

  37. 37.

    M. Yadi, R. Karimzadeh, and A. Abbasi, J. Mater. Sci. 52, 4532 (2017).

  38. 38.

    G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010).

  39. 39.

    S. Sahoo, G. Khurana, S.K. Barik, S. Dussan, D. Barrionuevo, and R.S. Katiyar, J. Phys. Chem. C 117, 5485 (2013).

  40. 40.

    K. Krishnamoorthy, M. Veerapandian, R. Mohan, and S.-J. Kim, Appl. Phys. A 106, 501 (2012).

  41. 41.

    L.M. Malarda, M.A. Pimentaa, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rep. 473, 51 (2009).

  42. 42.

    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 1 (2009).

  43. 43.

    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

  44. 44.

    P.B. Capple, J. Staromlynska, J.A. Hermann, and T.J. Mckay, J. Nonlinear Opt. Phys. Mater. 6, 251 (1997).

Download references

Author information

Correspondence to Rouhollah Karimzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 24391 kb)

Supplementary material 1 (MP4 24391 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Changaei, S., Zamir-Anvari, J., Heydari, N. et al. The Large and Tunable Nonlinear Absorption Response of Graphene Oxide Liquid Crystals. Journal of Elec Materi 48, 6216–6221 (2019). https://doi.org/10.1007/s11664-019-07420-2

Download citation

Keywords

  • Graphene oxide
  • liquid crystals
  • laser irradiation
  • nonlinear absorption