Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6093–6098 | Cite as

Ultimate Performance of IB CID T2SLs InAs/GaSb and InAs/InAsSb Longwave Photodetectors for High Operating Temperature Condition

  • P. MartyniukEmail author
  • K. Hackiewicz
  • J. Rutkowski
  • J. Mikołajczyk
Open Access
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • 58 Downloads
Part of the following topical collections:
  1. U.S. Workshop on Physics and Chemistry of II-VI Materials 2018

Abstract

The highest performance of interband cascade detectors optimized for the longwave range of infrared radiation is investigated in this work to include decisive electric gain contribution. Presently, AIIIBV-type-II superlattice systems exhibit short carrier lifetimes limited by Shockley–Read–Hall generation–recombination processes. The maximum reported carrier lifetimes at 77 K for the InAs/GaSb and InAs/InAsSb type-II superlattices in longwave range correspond to ∼ 200 ns and ∼ 400 ns, respectively. We estimated theoretical detectivity of interband cascade detectors versus high operating temperatures, number of stages, absorber thickness, absorption coefficient and carrier lifetime; carrier lifetime were varied up to the reported value of MCT ∼ 1 μs. It has been shown that for room temperature the utmost performance–detectivity ∼ 1010 cmHz1/2/W for the optimized detector operating in the longwave range ∼ 10 μm and assuming electric gain effect could be reached.

Keywords

HOT T2SLs InAs/GaS InAs/InAsSb FSO 

Notes

Acknowledgments

This paper has been done under financial support of the National Centre for Research and Development—Project DOB-BIO8/01/01/2016.

References

  1. 1.
    J. Piotrowski, P. Brzozowski, and K. Jóźwikowski, J. Electron. Mater. 32, 672 (2003).CrossRefGoogle Scholar
  2. 2.
    R.Q. Yang, Z. Tian, Z. Cai, J.F. Klem, M.B. Johnson, and H.C. Liu, J. Appl. Phys. 107, 054514 (2010).CrossRefGoogle Scholar
  3. 3.
    N. Gautam, S. Myers, A.V. Barve, B. Klein, E.P. Smith, D.R. Rhiger, L.R. Dawson, and S. Krishna, Appl. Phys. Lett. 101, 021106 (2012).CrossRefGoogle Scholar
  4. 4.
    R.T. Hinkey and R.Q. Yang, J. Appl. Phys. 114, 104506 (2013).CrossRefGoogle Scholar
  5. 5.
    J. Mikołajczyk, Int. J. Electron. Telecommun. 60, 259 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Mikołajczyk, Z. Bielecki, M. Bugajski, J. Piotrowski, J. Wojtas, W. Gawron, D. Szabra, and A. Prokopiuk, Metrol. Meas. Syst. 24, 653 (2017).CrossRefGoogle Scholar
  7. 7.
    A. Soibel, D.Z.-Y. Ting, C.J. Hill, M. Lee, J. Nguyen, S.A. Keo, J.M. Mumolo, and S.D. Gunapala, Appl. Phys. Lett. 96, 111102 (2010).CrossRefGoogle Scholar
  8. 8.
    W. Huang, L. Li, L. Lei, J.A. Massengale, R.Q. Yang, T.D. Mishima, and M.B. Santos, J. Appl. Phys. 123, 113104 (2018).CrossRefGoogle Scholar
  9. 9.
    R.Q. Yang, W. Huang, L. Li, L. Lei, J.A. Massengale, T.D. Mishima, and M.B. Santos, Proc. SPIE 10540, 105400E (2018).Google Scholar
  10. 10.
    L. Lei, L. Li, W. Huang, J.A. Massengale, H. Ye, H. Lotfi, R.Q. Yang, T.D. Mishima, M.B. Santos, and M.B. Johnson, Appl. Phys. Lett. 111, 113504 (2017).CrossRefGoogle Scholar
  11. 11.
    L. Lei, L. Li, H. Ye, H. Lotfi, R.Q. Yang, M.B. Johnson, J.A. Massengale, T.D. Mishima, and M.B. Santos, J. Appl. Phys. 120, 193102 (2016).CrossRefGoogle Scholar
  12. 12.
    L. Lei, L. Lia, H. Yea, H. Lotfia, R.Q. Yang, M.B. Johnson, J.A. Massengale, T.D. Mishima, and M.B. Santos, Proc. SPIE 10111, 1011113 (2017).CrossRefGoogle Scholar
  13. 13.
    R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleissner, R. Scheibner, and J. Ziegler, Infrared Phys. Technol. 52, 344 (2009).CrossRefGoogle Scholar
  14. 14.
    E.H. Aifer, J.G. Tischler, J.H. Warner, I. Vurgaftman, W.W. Bewley, J.R. Meyer, J.C. Kim, L.J. Whitman, C.L. Canedy, and E.M. Jackson, Appl. Phys. Lett. 89, 053519 (2006).CrossRefGoogle Scholar
  15. 15.
    S. Mou, J.V. Li, and S.L. Chuang, J. Quantum Electron. 45, 737 (2009).CrossRefGoogle Scholar
  16. 16.
    L. Hoglund, A. Soibel, D.Z. Ting, A. Khoshakhlagh, C.J. Hill, and S.D. Gunapala, Proc. SPIE 8511, 851106 (2012).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Applied PhysicsMilitary University of TechnologyWarsawPoland
  2. 2.Institute of OptoelectronicsMilitary University of TechnologyWarsawPoland

Personalised recommendations