Skip to main content
Log in

Preparation and Characterization of Electrochemical Deposition Cobalt Triantimonide (CoSb3) Thick Film: Effects of Polyvinyl Alcohol (PVA) as an Additive

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A thick film of cobalt triantimonide (CoSb3) skutterudites was successfully synthesized via electrochemical deposition by using an electrolyte that contains antimony (Sb3+) and cobalt (Co2+) ions in a weak acid solution in the presence of polyvinyl alcohol (PVA) as an additive. The process was conducted under a potentiostatic condition of − 1000 mV versus Ag/AgCl at room temperature. Two hours (2 h) of electrochemical deposition produced a 13 μm assisted PVA CoSb3 thick film. In comparison, most studied electrochemical deposition of CoSb3 skutterudites thin films is in the thickness range of 700–800 nm. The morphological studies of the films appeared to have a cauliflower-like structure with a presence of fern-like dendrite for a non-PVA electrolyte due to the limitation of ion diffusion in the nucleation growth area. The absence of dendrite was observed in the assisted PVA films, which demonstrated an enhanced ion diffusion in the vicinity with a better stoichiometric ratio for Co:Sb of 1:3 thick film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zheng, F. Li, F. Li, Y. Li, P. Fan, J. Luo, G. Liang, B. Fan, and A. Zhong, Thin Solid Films 632, 88 (2017).

    Article  Google Scholar 

  2. M. Rull-Bravo, A. Moure, J.F. Fernández, and M. Martín-González, RSC Adv. 5, 41653 (2015).

    Article  Google Scholar 

  3. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Cryst. Growth 166, 722 (1996).

    Article  Google Scholar 

  4. D.T. Morelli, T. Caillat, J.P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, Phys. Rev. B 51, 9622 (1995).

    Article  Google Scholar 

  5. L. Bertini, K. Biliquist, M. Christensen, C. Gatti, L. Holmgren, B. Iversen, E. Mueller, M. Muhammed, G. Noriega, A. Palmqvist, D. Platzek, D.M. Rowe, A. Saramat, C. Stiewe, M. Toprak, S.G. Williams, and Y. Zhang, in 22nd International Conference on Thermoelectrics proceeding (2003), pp. 93–96.

  6. H. Li, X. Tang, X. Su, and Q. Zhang, Appl. Phys. Lett. 92, 202114 (2008).

    Article  Google Scholar 

  7. G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, and O. Eibl, Acta Mater. 63, 30 (2014).

    Article  Google Scholar 

  8. S. Yadav, B.S. Yadav, S. Chaudhary, and D.K. Pandya, RSC Adv. 7, 20336 (2017).

    Article  Google Scholar 

  9. R. Vidu, M. Perez-Page, D.V. Quach, X.Y. Chen, and P. Stroeve, Electroanalysis 27, 2845 (2015).

    Article  Google Scholar 

  10. H. Cheng, H.H. Hng, J. Ma, and X.J. Xu, J. Mater. Res. 23, 3013 (2008).

    Article  Google Scholar 

  11. Y.N. Sadana and R. Kumar, Surf. Technol. 11, 37 (1980).

    Article  Google Scholar 

  12. D.V. Quach, R. Vidu, J.R. Groza, and P. Stroeve, Ind. Eng. Chem. Res. 49, 11385 (2010).

    Article  Google Scholar 

  13. J.F. Behnke, A.L. Prieto, A.M. Stacy, and T. Sands, in Eighteenth International Conference on Thermoelectrics. Proceedings (1999), pp. 451–453.

  14. L.J. Chen, H.N. Hu, Y.X. Li, G.F. Chen, S.Y. Yu, and G.H. Wu, Chem. Lett. 35, 170 (2006).

    Article  Google Scholar 

  15. L. Hicks and D. Dresselhaus, Phys. Rev. B 47, 727 (1993).

    Article  Google Scholar 

  16. C. Lei, K.S. Ryder, E. Koukharenko, M. Burton, and I.S. Nandhakumar, Electrochem. Commun. 66, 1 (2016).

    Article  Google Scholar 

  17. S. Li, H.M.A. Soliman, J. Zhou, M.S. Toprak, M. Muhammed, D. Platzek, P. Ziolkowski, and E. Müller, Chem. Mater. 20, 4403 (2008).

    Article  Google Scholar 

  18. J.H. We, S.J. Kim, G.S. Kim, and B.J. Cho, J. Alloys Compd. 552, 107 (2013).

    Article  Google Scholar 

  19. Y. Ma, W. Wijesekara, and A.E.C. Palmqvist, J. Electron. Mater. 41, 1138 (2012).

    Article  Google Scholar 

  20. N.H. Trung, K. Sakamoto, N.V. Toan, and T. Ono, Materials 10, 154 (2017).

    Article  Google Scholar 

  21. M.A. Hossain, R. Al-Gaashani, H. Hamoudi, M.J. Al Marri, I.A. Hussein, A. Belaidi, B.A. Merzougui, F.H. Alharbi, and N. Tabet, Mater. Sci. Semicond. Process. 63, 203 (2017).

    Article  Google Scholar 

  22. M.H. Tran, J.Y. Cho, S. Sinha, M.G. Gang, and J. Heo, Thin Solid Films 661, 132 (2018).

    Article  Google Scholar 

  23. Q. Zhang, Y. Wang, W. Wang, N. Mitsuzak, and Z. Chen, Electrochem. Commun. 63, 22 (2016).

    Article  Google Scholar 

  24. R. Oommen, U. Rajalakshmi, and Sanjeeviraja, Int. J. Electrochem. Sci. 7, 8288 (2012).

    Google Scholar 

  25. A. Aldalbahi, E.M. Mkawi, K. Ibrahim, and M.A. Farrukh, Sci. Rep. 6, 32431 (2016).

    Article  Google Scholar 

  26. J. Yu, H. Deng, J. Tao, L. Chen, H. Cao, L. Sun, P. Yang, and J. Chu, Mater. Lett. 191, 186 (2017).

    Article  Google Scholar 

  27. H.H. Gatzen, V. Saile, and J. Leuthold, Micro and Nano Fabrication (Berlin: Springer, 2015), p. 65.

    Google Scholar 

  28. Y. Liu, Z. Li, Y. Wang, and W. Wang, Trans. Nonferrous Met. Soc. China 24, 876 (2014).

    Article  Google Scholar 

  29. P.T. Kalisman, Study of the Electrochemical System of Antimony-Tellurium in Dimethyl Sulfoxide for Growth of Nanowire Arrays, and an Innovative Method for Single Nanowire Measurements (Open Access Publications from the University of California, 2012), https://escholarship.org/uc/item/8cr738f5. Accessed 18 Dec 2018.

  30. A. Brenner and G.E. Riddell, J. Res. Natl. Bur. Stand. (U. S.) 39, 385 (1946).

    Article  Google Scholar 

  31. M. Paunovic and M. Schlesinger, Fundamental of Electrochemical Deposition (Hoboken: Wiley, 2006), p. 113.

    Book  Google Scholar 

  32. A. Bweick, M. Fleischmann, and H. Thirsk, Trans. Farad. Soc. 58, 2200 (1962).

    Article  Google Scholar 

  33. M. Paunovic and M. Schlesinger, Fundamental of Electrochemical Deposition (Hoboken: Wiley, 2006), p. 273.

    Book  Google Scholar 

  34. R. Vidu, S. Li, D.V. Quach, and P. Stroeve, J. Appl. Electrochem. 42, 333 (2012).

    Article  Google Scholar 

  35. Y. Sun, J.-L. Sang, X. Wang, and Y.-J. Li, Electrochim. Acta 216, 88 (2016).

    Article  Google Scholar 

  36. E. Kaniukov, D. Yakimchuk, G. Arzumanyan, H. Terryn, K. Baert, A. Kozlovskiy, M. Zdorovets, E. Belonogov, and S. Demyanov, Philos. Mag. 97, 2268 (2017).

    Article  Google Scholar 

  37. M.V. Mandke, S.-H. Han, and H.M. Pathan, CrystEngComm 14, 86 (2012).

    Article  Google Scholar 

  38. D.K. Sharma, A. Ott, A.P. O’Mullane, and S.K. Bhargava, Colloids Surf. A. 386, 98 (2011).

    Article  Google Scholar 

  39. I. Oftedal, Z. Kristallogr. Cryst. Mater. 66, 517 (1928).

    Article  Google Scholar 

  40. M. Paunovic and M. Schlesinger, Fundamental of Electrochemical Deposition (Hoboken: Wiley, 2006), p. 190.

    Book  Google Scholar 

  41. P.B. Patil, S.S. Mali, V.V. Kondalkar, R.M. Mane, P.S. Patil, C.K. Hong, and P.N. Bhosale, J. Electroanal. Chem. 758, 178 (2015).

    Article  Google Scholar 

  42. X. Luo, J. Li, and X. Lin, Carbohydr. Polym. 90, 1595 (2012).

    Article  Google Scholar 

  43. D.I. Tishkevich, S.S. Grabchikov, L.S. Tsybulskaya, V.S. Shendyukov, S.S. Perevoznikov, S.V. Trukhanov, E.L. Trukhanov, A.V. Trukhanov, and D.A. Vinnik, J. Alloys Compd. 735, 1943 (2018).

    Article  Google Scholar 

  44. W. Sang, Y. Fang, J. Fan, Y. He, J. Min, and Y. Qian, J. Cryst. Growth 299, 272 (2007).

    Article  Google Scholar 

  45. C. Lei, M.R. Burton, and I.S. Nandhakumar, Phys. Chem. Chem. Phys. 18, 14164 (2016).

    Article  Google Scholar 

  46. H. Nishikiori, M. Takei, K. Oki, S. Takano, N. Tanaka, and T. Fujii, Appl. Catal. B 127, 227 (2012).

    Article  Google Scholar 

  47. Z. Zheng, P. Fan, G. Liang, and D. Zhang, J. Alloys Compd. 619, 676 (2015).

    Article  Google Scholar 

  48. B. Alinejad, A. Castellero, and M. Baricco, Scr. Mater. 113, 110 (2016).

    Article  Google Scholar 

  49. J. Leszczynski, V.D. Ros, B. Lenoir, A. Dauscher, C. Candolfi, P. Masschelein, J. Hejtmanek, K. Kutorasinski, J. Tobola, R.I. Smith, C. Stiewe, and E. Müller, J. Phys. D Appl. Phys. 46, 495106 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by University Malaya (PG120-2016A & GPF003A-2018). Part of this work was performed in the Micro/Nanomachining Research Education Center (MNC) of Tohoku University, Japan under a Japan Student Services Organization (JASSO) scholarship. Nuur Syahidah Sabran would like to thank the Ministry of Education of Malaysia for the scholarship (MyPhD) awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Faizul Mohd Sabri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabran, N.S., Fadzallah, I., Ono, T. et al. Preparation and Characterization of Electrochemical Deposition Cobalt Triantimonide (CoSb3) Thick Film: Effects of Polyvinyl Alcohol (PVA) as an Additive. J. Electron. Mater. 48, 5003–5011 (2019). https://doi.org/10.1007/s11664-019-07295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07295-3

Keywords

Navigation