Advertisement

Precipitation-Deposition of Visible-Light-Driven AgCl/Bi2WO6 Nanocomposites used for the Removal of Rhodamine B

  • Sittikorn Jonjana
  • Anukorn PhuruangratEmail author
  • Nuengruethai Ekthammathat
  • Somchai Thongtem
  • Titipun ThongtemEmail author
Article
  • 2 Downloads

Abstract

In this research, the effect of weight percent of AgCl nanospheres loaded on Bi2WO6 nanoplates for photocatalytic degradation of rhodamine B (RhB) was studied. The Bi2WO6 nanoplates were synthesized by the hydrothermal method and followed by the precipitation-deposition of AgCl nanospheres on Bi2WO6 nanoplates at room temperature. The as-synthesized samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and x-ray photoelectron spectroscopy, including the intermediates of rhodamine B (RhB) that were investigated by m/z mass spectroscopy. The analytical results revealed very good dispersed cubic AgCl nanospheres supported on orthorhombic Bi2WO6 nanoplates. The photocatalytic performance of Bi2WO6 and AgCl/Bi2WO6 samples was monitored through photodegradation of RhB under visible light irradiation. AgCl/Bi2WO6 nanocomposites have photocatalytic activity higher than pure Bi2WO6. A photodegradation mechanism of AgCl/Bi2WO6 nanocomposites was also discussed according to the experimental results.

Keywords

AgCl/Bi2WO6 nanocomposites photocatalysis spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    H. Huang, R. Cao, S. Yu, K. Xu, W. Hao, Y. Wang, F. Dong, T. Zhang, and Y. Zhang, Appl. Catal. B 219, 526 (2017).CrossRefGoogle Scholar
  2. 2.
    A.M. Yang, Y. Han, S.S. Li, H.W. Xing, Y.H. Pan, and W.X. Liu, J. Alloys Compd. 695, 915 (2017).CrossRefGoogle Scholar
  3. 3.
    F. Amano, A. Yamakata, K. Nogami, M. Osawa, and B. Ohtani, J. Am. Chem. Soc. 130, 17650 (2008).CrossRefGoogle Scholar
  4. 4.
    P. Dumrongrojthanath, A. Phuruangrat, S. Thongtem, and T. Thongtem, Mater. Lett. 209, 501 (2017).CrossRefGoogle Scholar
  5. 5.
    G. Fu, G. Xu, S. Chen, L. Lei, and M. Zhang, Catal. Commun. 40, 120 (2013).CrossRefGoogle Scholar
  6. 6.
    J. Zhang, L. Huang, H. Jin, Y. Sun, X. Ma, E. Zhang, H. Wang, Z. Kong, J. Xi, and Z. Ji, Mater. Res. Bull. 85, 140 (2017).CrossRefGoogle Scholar
  7. 7.
    R. Lamba, A. Umar, S.K. Mehta, W.A. Anderson, and S.K. Kansal, J. Mol. Catal. A 408, 189 (2015).CrossRefGoogle Scholar
  8. 8.
    R. Meribout, Y. Zuo, A.A. Khodja, A. Piram, S. Lebarillier, J. Cheng, C. Wang, and P.W.W. Chung, J. Photochem. Photobiol. A 328, 105 (2016).CrossRefGoogle Scholar
  9. 9.
    D. Huang, J. Ma, L. Yu, D. Wu, K. Wang, M. Yang, D. Papoulis, and S. Komarneni, Separ. Purif. Tech. 156, 789 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, Y. Zhang, and J. Tan, J. Alloys Compd. 574, 383 (2013).CrossRefGoogle Scholar
  11. 11.
    L. Dong, Y. He, T. Li, J. Cai, W. Hu, S. Wang, H. Lin, M. Luo, X. Yi, L. Zhao, W. Weng, and H. Wand, Appl. Catal. A 472, 143 (2014).CrossRefGoogle Scholar
  12. 12.
    Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A., (2001).Google Scholar
  13. 13.
    S. Jonjana, A. Phuruangrat, S. Thongtem, and T. Thongtem, Mater. Lett. 179, 162 (2016).CrossRefGoogle Scholar
  14. 14.
    Q. Fan, Y. Huang, C. Zhang, J. Liu, L. Piao, Y. Yu, S. Zuo, and B. Li, Catal. Today 264, 250 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Wang, P. Guo, Q. Guo, P.G. Jönssona, and Z. Zhao, CrystEngComm 16, 4485 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Liao, S. Zhu, Z. Chen, X. Lou, and D. Zhang, Phys. Chem. Chem. Phys. 17, 27826 (2015).CrossRefGoogle Scholar
  17. 17.
    T. Wu, G. Liu, and J. Zhao, J. Phys. Chem. B 102, 5845 (1998).CrossRefGoogle Scholar
  18. 18.
    H. Fu, C. Pan, W. Yao, and Y. Zhu, J. Phys. Chem. B 109, 22432 (2005).CrossRefGoogle Scholar
  19. 19.
    L. Wang, C.G. Niu, Y. Wang, Y. Wang, and G.M. Zeng, Ceram. Int. 42, 18605 (2016).CrossRefGoogle Scholar
  20. 20.
    A. Cai, X. Wang, A. Guo, and Y. Chang, J. Photochem. Photobiol. B 162, 486 (2016).CrossRefGoogle Scholar
  21. 21.
    S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, and H. He, Appl. Catal. B 144, 885 (2014).CrossRefGoogle Scholar
  22. 22.
    E.D. Sherly, J.J. Vijaya, and L.J. Kennedy, Chin. J. Catal. 36, 1263 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Technology, Faculty of SciencePrince of Songkla UniversityHat YaiThailand
  2. 2.Program in Chemistry, Faculty of Science and TechnologyBansomdejchaopraya Rajabhat UniversityBangkokThailand
  3. 3.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  4. 4.Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  5. 5.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations