Advertisement

Crystal Structures and Phase-Transitions Analysis of the Double Perovskites Sr2Co1−xNixTeO6 (x = 0.25, 0.5 and 0.75) Using X-ray Powder Diffraction, Raman and Infrared Spectroscopy

  • A. ZaraqEmail author
  • B. OrayechEmail author
  • J. M. Igartua
  • A. El Bouari
Article
  • 4 Downloads

Abstract

The reaction between the complexes of double perovskite formula Sr2Co1−xNixTeO6 in different stoichiometric proportions (x = 0.25, 0.5 and 0.75) have been processed in polycrystalline form by solid– state reaction mode in air. Based on the Rietveld refinements of x-ray powder diffraction data, the crystal structures and phase transitions, at room temperature of this double perovskite series are reported. The materials crystallize in a monoclinically distorted perovskite structure (the two compositions with x = 0.5 and 0.75 belong the to I2/m space group, while the composition with x = 0.25 crystallize in P21/n space group). We found a good agreement between the lattice parameters of this series and those of the two materials Sr2CoTeO6 and Sr2NiTeO6 with x = 0 and 1, respectively. The linear evolution of crystalline parameters proves the realization of the Vegard Law. The effect of the partial substitution of Co by Ni was also seen in the spectra of Raman and infrared, where a band shift was observed with increased nickel content.

Keywords

Sr2Co1−xNixTeO6 double perovskites oxides x-ray powder diffraction phase transition Rietveld refinements Raman and infrared spectroscopy crystal structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge University Hassan II, Casablanca, Morocco, for their support. We are grateful to Engineers (in Service Centrale d’Analyse (CSA) de l’Unités d’Appui Technique à la Recherche Scientifique (UATRS)” CNRS- Rabat, Morocco) for technical assistance.

References

  1. 1.
    R.S. Roth, J. Res. Natl. Bur. Stand. 58, 75 (1957).CrossRefGoogle Scholar
  2. 2.
    M. Ochi, I. Yamada, K. Ohgushi, Y. Kusano, M. Mizumaki, R. Takahashi, S. Yagi, N. Nishiyama, T. Inoue, and T. Irifune, Inorg. Chem. 52, 3985 (2013).CrossRefGoogle Scholar
  3. 3.
    M.C. Knapp and P.M. Woodward, J. Solid State Chem. 179, 1076 (2006).CrossRefGoogle Scholar
  4. 4.
    M.T. Anderson, K.B. Greenwood, G.A. Taylor, and K.R. Poeppelmeier, Prog. Solid State Chem. 22, 197 (1993).CrossRefGoogle Scholar
  5. 5.
    Yu.E Smirnov, T.D. Smirnova, and I.A. Zvereva, Rus. J. Gen. Chem. 75, 1359 (2005).CrossRefGoogle Scholar
  6. 6.
    R. Mukherjee, B. Ghosh, S. Saha, C. Bharti, and T.P. Sinha, J. Rare Earths. 32, 334 (2014).CrossRefGoogle Scholar
  7. 7.
    T. Yang, T. Perkisas, J. Hadermann, M. Croft, A. Ignatov, and M. Greenblatt, J. Solid State Chem. 183, 2689 (2010).CrossRefGoogle Scholar
  8. 8.
    S. Zhao, K. Yamamoto, S. Iikubo, S. Hayase, and T. Ma, J. Phys. Chem. Solids 117, 117 (2018).CrossRefGoogle Scholar
  9. 9.
    T. Sugahara, M. Ohtaki, and K. Suganuma, J. Asian Ceram. Soc. 1, 282 (2013).CrossRefGoogle Scholar
  10. 10.
    P.A. Kumar, S. Ivanov, C. Ritter, R. Vijayaraghavan, R. Mathieu, P. Nordblad, N. Sadovskaya, and D.D. Sarma, J. Alloys Compd. 693, 1096 (2017).CrossRefGoogle Scholar
  11. 11.
    Z.W. Song and B.G. Liu, Chin. Phys. B 22, 047506 (2013).CrossRefGoogle Scholar
  12. 12.
    V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926).CrossRefGoogle Scholar
  13. 13.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  14. 14.
    A. Zaraq, B. Orayech, A. Faik, J.M. Igartua, A. Jouanneaux, and A. El Bouari, Polyhedron 110, 119 (2016).CrossRefGoogle Scholar
  15. 15.
    D.-D. Han, W. Gao, N.-N. Li, R.-L. Tang, H. Li, Y.-M. Ma, Q.-L. Cui, P.-W. Zhu, and X. Wang, Chin. Phys. B 22, 059101 (2013).CrossRefGoogle Scholar
  16. 16.
    B. Orayech, L. Ortega-San-Martín, I. Urcelay-Olabarria, L. Lezama, T. Rojo María, I. Arriortua, and J.M. Igartua, Dalton Trans 44, 13716 (2015).CrossRefGoogle Scholar
  17. 17.
    B. Orayech, A. Faik, and J.M. Igartua, Polyhedron 123, 265 (2017).CrossRefGoogle Scholar
  18. 18.
    A. Faik, D. Orobengoa, E. Iturbe-Zabalo, and J.M. Igartua, J. Solid State Chem. 192, 273 (2012).CrossRefGoogle Scholar
  19. 19.
    L.A. Baum, S.J. Stewart, R.C. Mercader, and J.M. Grenèche, Hyperfine Interact. 156, 157 (2004).CrossRefGoogle Scholar
  20. 20.
    Y. Tang, R. Paria Sena, M. Avdeev, P.D. Battle, J.M. Cadogan, J. Hadermann, and E.C. Hunter, J. Solid State Chem. 253, 347 (2017).CrossRefGoogle Scholar
  21. 21.
    K. Yamamura, M. Wakeshima, and Y. Hinatsu, J. Solid State Chem. 179, 605 (2006).CrossRefGoogle Scholar
  22. 22.
    P.G.R. Achary, S.K. Dehury, and R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 6805 (2018).CrossRefGoogle Scholar
  23. 23.
    T. Zheng, J. Wu, D. Xiao, and J. Zhu, Prog. Mater Sci. 98, 552 (2018).CrossRefGoogle Scholar
  24. 24.
    A. Khouidmi, H. Baltache, and A. Zaoui, Chin. Phys. Lett. 34, 076103 (2017).CrossRefGoogle Scholar
  25. 25.
    Y. Huang, R. Dass, Z.-L. Xing, and J.B. Goodenough, Science 312, 254 (2006).CrossRefGoogle Scholar
  26. 26.
    X. Zhang, Y. Jiang, X. Hu, L. Sun, and Y. Ling, Electron. Mater. Lett. 14, 147 (2018).CrossRefGoogle Scholar
  27. 27.
    S.A. Dar, V. Srivastava, U.K. Sakalle, and V. Parey, Eur. Phys. J. Plus 133, 64 (2018).CrossRefGoogle Scholar
  28. 28.
    M.S. Augsburger, M.C. Viola, J.C. Pedregosa, A. Muñoz, J.A. Alonso, and R.E. Carbonio, J. Mater. Chem. 15, 993 (2005).CrossRefGoogle Scholar
  29. 29.
    L. Ortega-San Martin, J.P. Chapman, L. Lezama, J.S. Marcos, J. Rodrıguez-Fernandez, M.I. Arriortua, and T. Rojo, J. Mater. Chem. 15, 183 (2005).CrossRefGoogle Scholar
  30. 30.
    YuN Venevtsev, E.D. Politova, and G.S. Zhdanov, Ferroelectrics 8, 489 (1974).CrossRefGoogle Scholar
  31. 31.
    L. Ortega-San Martin, J.P. Chapman, G. Cuello, J. Gonzalez-Calbet, M.I. Arriortua, and T. Rojo, Z. Anorg. Allg. Chem. 631, 2127 (2005).CrossRefGoogle Scholar
  32. 32.
    T. Roisnel and J. Rodríquez-Carvajal, Mater. Sci. Forum 378–381, 118 (2001).CrossRefGoogle Scholar
  33. 33.
    A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).CrossRefGoogle Scholar
  34. 34.
    K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008).CrossRefGoogle Scholar
  35. 35.
    A.M. Glazer, Acta Cryst. A31, 756 (1975).CrossRefGoogle Scholar
  36. 36.
    E. Kroumova, M.I. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Phase Transit. 76 (2003) 155. http://www.cryst.ehu.es/.
  37. 37.
    Y. Tamraoui, B. Manoun, F. Mirinioui, R. Haloui, and P. Lazor, J. Alloys Compd. 603, 86 (2014).CrossRefGoogle Scholar
  38. 38.
    A.P. Ayala, I. Guedes, E.N. Silva, M.S. Augsburger, M.C. del Viola, and J.C. Pedregosa, J. Appl. Phys. 101, 123511 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratory of Physico Chemistry of Applied Materials (LPCMA), Faculty of Sciences Ben M’SikUniversity Hassan II CasablancaCasablancaMorocco
  2. 2.Maxam, Technology Center Energetic MaterialsQuintanilla SobresierraSpain
  3. 3.Fisika Aplikatua II Saila, Zientzia eta Teknologia FakultateaEuskal Herriko UnibertsitateaBilbaoSpain

Personalised recommendations