Advertisement

Investigation of Organic LED Materials Using a Transparent Cathode for Improved Efficiency

  • Rita RanaEmail author
  • Rajesh Mehra
Article
  • 20 Downloads

Abstract

This paper proposes a flexible transparent organic light-emitting diode (OLED) which is notable due to its high electron injection and transmittance. Though graphene-based OLEDs are promising candidates for flexible displays due to the enormous merits offered, a significant decrease in its device efficiency was reported in comparison to the other conventional indium tin oxide-based OLEDs. The device illustrated enhances the performance of the graphene-based flexible OLEDs through balanced charge recombination. A theoretical analysis has been done through performing optical simulations. The structure of the graphene-based OLED is optimized through the employment of efficient cathode and electron injection layer materials to boost the electron injection into the device. With the aid of simulations, it was found that optimum results are obtained with aluminum zinc oxide (Al:ZnO) as the cathode and Al/LiF/Alq3 as the electron injection layer. The proposed structure exhibits high transmittance of 87.14% with a current efficiency of 61.17 cd/A, and external quantum efficiency (EQE) of 21.2% at 1000 cd/m2 for the bottom side. An evident improvement in the device performance with 32.9% increase in the current efficiency, and 45.2% increase in the EQE was observed.

Keywords

Electron injection flexible organic light-emitting diode transparent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We express sincere thanks to our Director Dr. S. S. Pattnaik who availed us with the necessary resources which were much needed to complete the work. We would also like to thank our Electronics and Communication Department for providing us valuable support and inputs which helped us in improving our work.

References

  1. 1.
    B.N. Patel and M.M. Prajapati, Int. J. Sci. Res. Pubs. 4, 1 (2014).Google Scholar
  2. 2.
    G. Dhyani and N. Bisht, Int. Res. J. Eng. Tech. 3, 55 (2016).Google Scholar
  3. 3.
    F. Batool, Int. J. Adv. Res. Comput. Commun. Eng. 5, 152 (2016).Google Scholar
  4. 4.
    A.M. Ijeaku, M.H. Chidubem, E.K. Chukwunonyerem, and N.U. Obioma, Am. J. Eng. Res. 4, 153 (2015).Google Scholar
  5. 5.
    A.M. Bagher, Am. J. Opt. Photon. 2, 32 (2014).CrossRefGoogle Scholar
  6. 6.
    J.K. Wassei and R.B. Kaner, Mater. Today 13, 52 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Bruna and S. Borini, Appl. Phys. Lett. 94, 1 (2009).CrossRefGoogle Scholar
  8. 8.
    F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, Nat. Photon. 4, 611 (2010).CrossRefGoogle Scholar
  9. 9.
    S.Y. Kim and J. Kim, J. Org. Electron. 13, 1081 (2012).CrossRefGoogle Scholar
  10. 10.
    T.-H. Han, S.-H. Jeong, Y. Lee, H.-K. Seo, S.-J. Kwon, M.-H. Park, and T.-W. Lee, J. Inf. Disp. 16, 71 (2015).CrossRefGoogle Scholar
  11. 11.
    N. Li, S. Oida, G.S. Tulevski, S.-J. Han, J.B. Hannon, D.K. Sadana, and T.-C. Chen, Nat. Commun. 4, 2294 (2013).CrossRefGoogle Scholar
  12. 12.
    J. Moon, J.-W. Shin, H. Cho, J.-H. Han, N.S. Cho, J.T. Lim, S.K. Park, H.K. Choi, S.-Y. Choi, J.-H. Kim, M.-J. Maeng, J. Seo, Y. Park, and J.-I. Lee, Diamond Relat. Mater. 57, 68 (2015).CrossRefGoogle Scholar
  13. 13.
    J.-Y. Hong and J. Jang, J. Mater. Chem. 22, 8179 (2012).CrossRefGoogle Scholar
  14. 14.
    H. Cho, J.-W. Shin, N.S. Cho, J. Moon, J.-H. Han, Y.-D. Kwon, S. Cho, and J.-I. Lee, IEEE J. Sel. Top. Quantum Electron. 22, 2000306 (2016).CrossRefGoogle Scholar
  15. 15.
    H. Cho, C. Yun, and S. Yoo, Opt. Express 18, 3404 (2010).CrossRefGoogle Scholar
  16. 16.
    E. Oh, S. Park, J. Jeong, S.J. Kang, H. Lee, and Y. Yi, Chem. Phys. Lett. 668, 64 (2017).CrossRefGoogle Scholar
  17. 17.
    R.N. Chauhan, N. Tiwari, R.S. Anand, and J. Kumar, J RSC Adv. 6, 86770 (2016).CrossRefGoogle Scholar
  18. 18.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 1 (2005).CrossRefGoogle Scholar
  19. 19.
    T. Minami, Semicond. Sci. Technol. 20, S35 (2005).CrossRefGoogle Scholar
  20. 20.
    S. Taverne, B. Caron, S. Gétin, O. Lartigue, C. Lopez, S. Meunier-Della-Gatta, V. Gorge, M. Reymermier, B. Racine, T. Maindron, and E. Quesnel, J. Appl. Phys. 123, 1 (2018).CrossRefGoogle Scholar
  21. 21.
    K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, H.W. Choi, N.Y. Lee, Y.H. Tak, and J.L. Lee, J. Phys. Chem. C 115, 3453 (2011).CrossRefGoogle Scholar
  22. 22.
    K. Bouzid, T. Maindron, and H. Kanaan, J. Soc. Inf. Disp. 24, 563 (2016).CrossRefGoogle Scholar
  23. 23.
    G.W. Kim, R. Lampande, J. Boizot, G.H. Kim, D.C. Choe, and J.H. Kwon, Nanoscale 6, 3810 (2014).CrossRefGoogle Scholar
  24. 24.
    H. Lee, M.J. Maeng, J.A. Hong, R. Najnin, J. Moon, H. Cho, J. Lee, B. Gon, Y. Park, and N.S. Cho, J. Mater. Chem. C 5, 9911 (2017).CrossRefGoogle Scholar
  25. 25.
    S.H. Rhee, K.B. Nam, C.S. Kim, M. Song, W. Cho, S.H. Jin, and S.Y. Ryu, ECS Solid State Lett. 3, R19 (2014).CrossRefGoogle Scholar
  26. 26.
    B.Y. Kim, S.J. Lee, J.R. Koo, S.E. Lee, K.H. Lee, J.A. Yoon, W.Y. Kim, S.S. Yoon, and Y.K. Kim, J. Nanosci. Nanotechnol. 13, 7998 (2013).CrossRefGoogle Scholar
  27. 27.
    B. Liu, M. Xu, L. Wang, H. Tao, Y. Su, D. Gao, J. Zou, L. Lan, and J. Peng, ECS J. Solid State Sci. Technol. 2, R258 (2013).CrossRefGoogle Scholar
  28. 28.
    G. He, O. Schneider, D. Qin, X. Zhou, M. Pfeiffer, and K. Leo, J. Appl. Phys. 95, 5773 (2004).CrossRefGoogle Scholar
  29. 29.
    H. Wang, Q. Liao, H. Fu, Y. Zeng, Z. Jiang, J. Ma, and J. Yao, J. Mater. Chem. 19, 89 (2009).CrossRefGoogle Scholar
  30. 30.
    J.-H. Kim, J. Seo, D.-G. Kwon, J.-A. Hong, J. Hwang, H.K. Choi, J. Moon, J.-I. Lee, D.Y. Jung, S.-Y. Choi, and Y. Park, Carbon 79, 623 (2014).CrossRefGoogle Scholar
  31. 31.
    C.W. Joo, J. Moon, J. Hwang, J.-H. Han, J.-W. Shin, D.-H. Cho, J.W. Huh, H.Y. Chu, and J.-I. Lee, Jpn. J. Appl. Phys. 51, 1 (2012).CrossRefGoogle Scholar
  32. 32.
    X.-B. Shi, Y. Hu, B. Wang, L. Zhang, Z.-K. Wang, and L.-S. Liao, Adv. Mater. 27, 6696 (2015).CrossRefGoogle Scholar
  33. 33.
    L. Zhang, X.-L. Li, D. Luo, P. Xiao, W. Xiao, Y. Song, Q. Ang, and B. Liu, Materials 10, 1 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technical Teachers Training and ResearchChandigarhIndia

Personalised recommendations