Overcoming Mobility Lifetime Product Limitations in Vertical Bridgman Production of Cadmium Zinc Telluride Detectors

  • Jedidiah J. McCoyEmail author
  • Saketh Kakkireni
  • Zachary H. Gilvey
  • Santosh K. Swain
  • Aleksey E. Bolotnikov
  • Kelvin G. Lynn


Cadmium zinc telluride (CZT) possesses excellent material properties for a wide range of applications where room temperature operability, durability, and high efficiency are required. However, because CZT is a challenging material to produce in useful quantities, the growth and fabrication costs have remained high, creating an economic challenge for vendors. While the traveling heater method (THM) is the predominant means of commercial CZT crystal growth, the vertical Bridgman method (VB) is an attractive alternative due to its relatively fast growth rate. However, VB grown CZT has yet to compete with THM grown CZT, particularly in terms of charge collection efficiencies, where the charge collection efficiency is characterized by the single carrier electron mobility lifetime (μτe) product. Despite efforts to overcome this discrepancy, the μτe product in VB grown CZT has remained an order of magnitude lower than THM. Eliminating this difference would bring VB one step closer to outpacing THM in terms of economic feasibility. This paper discusses the development of a unique technique that combines the advantages of both growth methods to better understand this discrepancy and the underlying mechanisms behind it. CZT ingots were grown from melt via VB with highly off-stoichiometric concentrations of tellurium (Te). Melt mixing via accelerated crucible rotation (ACRT) was applied to compensate for any negative effects associated with off-stoichiometry, i.e. flux inclusions. CZT material has been produced at growth rates commensurate with VB (one ingot/week) and with charge collection efficiencies commensurate with THM (mid 10−2 cm2/V) in long bars typical of commercial applications.


Detectors mobility lifetime product vertical Bridgman impurities ACRT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the National Nuclear Security Administration (NNSA) under Grant DE-NA0002565 U.S. Department of Energy and by the Center for Materials Research, Washington State University.


  1. 1.
    T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R Rep. 32, 103 (2001).CrossRefGoogle Scholar
  2. 2.
    J. Mackenzie, F.J. Kumar, and H. Chen, J. Electron. Mater. 42, 3129 (2013).CrossRefGoogle Scholar
  3. 3.
    J. Mackenzie, H. Chen, S.A. Awadalla, P. Marthandam, B. Redden, G. Bindley, Z. He, D.R. Black, M. Duff, M. Amman, J.S. Lee, P. Luke, M. Groza, and A. Burger, MRS Proc. 1164, 1164 (2009).CrossRefGoogle Scholar
  4. 4.
    H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, and R. Ohno, IEEE Trans. Nucl. Sci. 56, 1717 (2009).CrossRefGoogle Scholar
  5. 5.
    U.N. Roy, S. Weiler, and J. Stein, J. Cryst. Growth 312, 2840 (2010).CrossRefGoogle Scholar
  6. 6.
    U.N. Roy, S. Weiler, J. Stein, A. Hossain, G.S. Camarda, A.E. Bolotnikov, and R.B. James, J. Cryst. Growth 332, 34 (2011).CrossRefGoogle Scholar
  7. 7.
    R. Triboulet and P. Siffert, CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-Strucutres, Crystal Growth, Surfaces and Applications Part II Crystal Growth, Surfaces and Applications (Amsterdam: Elsevier, 2010).Google Scholar
  8. 8.
    J. McCoy, Implementation of Accelerated Crucible Rotation in Electrodynamic Gradient Freeze Method for Highly Non-stoichiometric Melt Growth of Cadmium Zinc Telluride Detectors (Pullman: Washington State University, 2018).Google Scholar
  9. 9.
    C. Buis, E. Gros d′Aillon, A. Lohstroh, G. Marrakchi, C. Jeynes, and L. Verger, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 735, 188 (2014).CrossRefGoogle Scholar
  10. 10.
    P. Rudolph, Cryst. Res. Technol. 52, 1600171 (2017).CrossRefGoogle Scholar
  11. 11.
    N. Audet and M. Cossette, J. Electron. Mater. 34, 683 (2005).CrossRefGoogle Scholar
  12. 12.
    R.O. Bell, N. Hemmat, and F. Wald, Phys. Status Solidi 1, 375 (1970).CrossRefGoogle Scholar
  13. 13.
    K. Zanio, J. Electron. Mater. 3, 327 (1974).CrossRefGoogle Scholar
  14. 14.
    P. Rudolph and M. Mühlberg, Mater. Sci. Eng. B 16, 8 (1993).CrossRefGoogle Scholar
  15. 15.
    P. Capper, J.E. Harris, E. O’Keefe, C.L. Jones, C.K. Ard, P. Mackett, and D. Dutton, Mater. Sci. Eng. B 16, 29 (1993).CrossRefGoogle Scholar
  16. 16.
    P. Capper, Prog. Cryst. Growth Charact. Mater. 28, 1 (1994).CrossRefGoogle Scholar
  17. 17.
    A. Datta, S. Swain, Y. Cui, A. Burger, and K. Lynn, J. Electron. Mater. 42, 3041 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Steininger, A.J. Strauss, and R.F. Brebrick, J. Electrochem. Soc. 117, 1305 (1970).CrossRefGoogle Scholar
  19. 19.
    T. Wang, W. Jie, J. Zhang, G. Yang, D. Zeng, Y. Xu, S. Ma, H. Hua, and K. He, J. Cryst. Growth 304, 313 (2007).CrossRefGoogle Scholar
  20. 20.
    K. Yokota, H. Nakai, K. Satoh, and S. Katayama, J. Cryst. Growth 112, 723 (1991).CrossRefGoogle Scholar
  21. 21.
    Glow discharge mass spectrometry (GDMS) analysis—National Research Council Canada (n.d.).Google Scholar
  22. 22.
    P. Rudolph, H.J. Koh, N. Schäfer, and T. Fukuda, J. Cryst. Growth 166, 578 (1996).CrossRefGoogle Scholar
  23. 23.
    P. Moskvin, V. Khodakovsky, L. Rashkovetskyi, and A. Stronski, J. Cryst. Growth 310, 2617 (2008).CrossRefGoogle Scholar
  24. 24.
    A.E. Bolotnikov, O.S. Babalola, G.S. Camarda, Y. Cui, A.M. Hossain, E.M. Jackson, H.C. Jackson, J.A. James, K.T. Kohman, A.L. Luryi, and R.B. James, IEEE Trans. Nucl. Sci. 55, 2757 (2008).CrossRefGoogle Scholar
  25. 25.
    A. Kadys, M. Sudzius, K. Jarasiunas, P. Fochuk, P. Feychuk, M.L. Hellin, and D. Verstraeten, Phys. Status Solidi 244, 1675 (2007).CrossRefGoogle Scholar
  26. 26.
    E. Belas, R. Grill, J. Franc, P. Hlídek, V. Linhart, T. Slavíček, and P. Höschl, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 591, 200 (2008).CrossRefGoogle Scholar
  27. 27.
    M. Chu, S. Terterian, D. Ting, C.C. Wang, J.D. Benson, J.H. Dinan, R.B. James, and A. Burger, J. Electron. Mater. 32, 778 (2003).CrossRefGoogle Scholar
  28. 28.
    US7067008B2 (2003).Google Scholar
  29. 29.
    C. Szeles, Private Communication (2017).Google Scholar
  30. 30.
    A.E. Bolotnikov, G.S. Camarda, E. Chen, R. Gul, V. Dedic, G. De Geronimo, J. Fried, A. Hossain, J.M. Mackenzie, L. Ocampo, P. Sellin, S. Taherion, E. Vernon, G. Yang, U. El-Hanany, and R.B. James, J. Appl. Phys. 120, 104507 (2016).CrossRefGoogle Scholar
  31. 31.
    J.C. Erickson, H.W. Yao, R.B. James, H. Hermon, and M. Greaves, J. Electron. Mater. 29, 699 (2000).CrossRefGoogle Scholar
  32. 32.
    CMR, Internal Communication (2019).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Center for Materials ResearchWashington State UniversityPullmanUSA
  2. 2.Brookhaven National LaboratoryUptonUSA

Personalised recommendations