Quantitative and Qualitative Characterization of Pure Copper Chromite Nanocomposites for Photodegradation of p-Nitrophenol in Aqueous Medium

  • Seyed Ghorban HosseiniEmail author
  • Hossein Sharifnezhad
  • Manoochehr Fathollahi


A series of copper chromite samples with different Cu/Cr molar ratios (0.5, 0.6, 0.7, 0.8, 0.9, 1, and 2) have been synthesized using the citric acid complexation sol–gel method from Cu(NO3)2·3H2O and Cr(NO3)3·9H2O precursor salts. The amounts of Cr2O3 and CuO in the samples were qualitatively and quantitatively confirmed by titration, and the samples were fully characterized using various common techniques such as x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive x-ray (EDAX) spectroscopy, transmission electron microscopy, and Fourier-transform infrared (FT-IR) spectroscopy. The XRD spectra of the samples showed the presence of CuCr2O4 and CuO as major and minor phase, respectively. SEM analysis determined the morphology of the samples to be spherical or quasispherical with low degree of homogeneity, while the presence of Cu, Cr, and O atoms was proved by EDAX without other impurity elements. FT-IR spectroscopy demonstrated the presence of Cu–O or Cr–O bonds in the range of 400 cm−1 to 700 cm−1. The photocatalytic activity of the as-prepared samples was tested in removal of p-nitrophenol from aqueous solution. The results showed that the sample with Cu/Cr = 0.6 exhibited the highest photodegradation percentage (and also degradation rate) during 100 min of light exposure.


Copper chromite copper oxide photocatalyst photodegradation p-nitrophenol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Malek Ashtar University of Technology for financial support.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    L. Yang, E.Y. Liya, and M.B. Ray, Water Res. 42, 3480 (2008).CrossRefGoogle Scholar
  2. 2.
    C.-H. Kuo, Y.-C. Yang, S. Gwo, and M.H. Huang, J. Am. Chem. Soc. 133, 1052 (2010).CrossRefGoogle Scholar
  3. 3.
    M. Yazdanbakhsh, I. Khosravi, E.K. Goharshadi, and A. Youssefi, J. Hazard. Mater. 184, 684 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Sun, J. Liu, and Z. Li, J. Solid State Chem. 184, 1924 (2011).CrossRefGoogle Scholar
  5. 5.
    H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, M. Sun, and X. Fu, Environ. Sci. Technol. 43, 4164 (2009).CrossRefGoogle Scholar
  6. 6.
    K. Barick, S. Singh, M. Aslam, and D. Bahadur, Microporous Mesoporous Mater. 134, 195 (2010).CrossRefGoogle Scholar
  7. 7.
    J. Gupta, K. Barick, and D. Bahadur, J. Alloys Compd. 509, 6725 (2011).CrossRefGoogle Scholar
  8. 8.
    Y. Li, T. Sasaki, Y. Shimizu, and N. Koshizaki, J. Am. Chem. Soc. 130, 14755 (2008).CrossRefGoogle Scholar
  9. 9.
    R. Rao, A. Dandekar, R. Baker, and M. Vannice, J. Catal. 171, 406 (1997).CrossRefGoogle Scholar
  10. 10.
    R. Prasad, Mater. Lett. 59, 3945 (2005).CrossRefGoogle Scholar
  11. 11.
    Z. Ma, Z. Xiao, J.A. van Bokhoven, and C. Liang, J. Mater. Chem. 20, 755 (2010).CrossRefGoogle Scholar
  12. 12.
    K. George and S. Sugunan, Catal. Commun. 9, 2149 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Barman, N.C. Pradhan, A. Acharya, and P. Pramanik, Ind. Eng. Chem. Res. 45, 3481 (2006).CrossRefGoogle Scholar
  14. 14.
    H. Wang, L. Chen, D. Luan, Y. Li, X. Yan, Y. Zhang, and J. Xing, React. Kinet. Catal. Lett. 89, 201 (2006).CrossRefGoogle Scholar
  15. 15.
    R.V. Green and D. Moses, Sewage Ind. Waste. 24, 288 (1952).Google Scholar
  16. 16.
    V. Vlasenko and V. Chernobrivets, Russ. J. Appl. Chem. 75, 1262 (2002).CrossRefGoogle Scholar
  17. 17.
    J. Laine and F. Severino, Appl. Catal. 65, 253 (1990).CrossRefGoogle Scholar
  18. 18.
    W. Li, H. Cheng, and J. Cent, South Univ. Technol. 14, 291 (2007).CrossRefGoogle Scholar
  19. 19.
    S.G. Hosseini, R. Abazari, and A. Gavi, Solid State Sci. 37, 72 (2014).CrossRefGoogle Scholar
  20. 20.
    S. Saadi, A. Bouguelia, and M. Trari, Renew. Energy 31, 2245 (2006).CrossRefGoogle Scholar
  21. 21.
    J. Yan, L. Zhang, H. Yang, Y. Tang, Z. Lu, S. Guo, Y. Dai, Y. Han, and M. Yao, Sol. Energy 83, 1534 (2009).CrossRefGoogle Scholar
  22. 22.
    S. Boumaza, R. Bouarab, M. Trari, and A. Bouguelia, Energy Convers. Manage. 50, 62 (2009).CrossRefGoogle Scholar
  23. 23.
    T. Valdes-Solis, G. Marban, and A. Fuertes, Catal. Today 116, 354 (2006).CrossRefGoogle Scholar
  24. 24.
    S. Boumaza, A. Auroux, S. Bennici, A. Boudjemaa, M. Trari, A. Bouguelia, and R. Bouarab, React. Kinet. Mech. Catal. 100, 145 (2010).Google Scholar
  25. 25.
    D.M. Ginosar, H.W. Rollins, L.M. Petkovic, K.C. Burch, and M.J. Rush, Int. J. Hydrogen Energy 34, 4065 (2009).CrossRefGoogle Scholar
  26. 26.
    T.P. Maniecki, P. Mierczynski, W. Maniukiewicz, K. Bawolak, D. Gebauer, and W.K. Jozwiak, Catal. Lett. 130, 481 (2009).CrossRefGoogle Scholar
  27. 27.
    A. Pattiya, J.O. Titiloye, and A.V. Bridgwater, J. Anal. Appl. Pyrolysis 81, 72 (2008).CrossRefGoogle Scholar
  28. 28.
    B.M. Latha, V. Sadasivam, and B. Sivasankar, Catal. Commun. 8, 1070 (2007).CrossRefGoogle Scholar
  29. 29.
    Z. Li and M. Flytzani-Stephanopoulos, Ind. Eng. Chem. Res. 36, 187 (1997).CrossRefGoogle Scholar
  30. 30.
    W. Xiong and G.M. Kale, Sens. Actuators B: Chem. 119, 409 (2006).CrossRefGoogle Scholar
  31. 31.
    D. Li, X. Fang, W. Dong, Z. Deng, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, and X. Zhu, J. Phys. D Appl. Phys. 42, 055009 (2009).CrossRefGoogle Scholar
  32. 32.
    H. Cui, M. Zayat, and D. Levy, J. Sol Gel. Sci. Technol. 35, 175 (2005).CrossRefGoogle Scholar
  33. 33.
    K.C. Patil, S.T. Aruna, and S. Ekambaram, Curr. Opin. Sol. State Mater. Sci. 2, 158 (1997).CrossRefGoogle Scholar
  34. 34.
    H. Adkins and R. Connor, J. Am. Chem. Soc. 53, 1091 (1931).CrossRefGoogle Scholar
  35. 35.
    I. Capek, Adv. Colloid Interface Sci. 110, 49 (2004).CrossRefGoogle Scholar
  36. 36.
    J. Arboleda, A. Echavarria, and L.A. Palacio, Powder Diffr. 24, 244 (2009).CrossRefGoogle Scholar
  37. 37.
    M. Cauqui, J. Rodriguez-Izquierdo, and J. Non-Cryst, Solids 147, 724 (1992).Google Scholar
  38. 38.
    C.J. Brinker and G. Scherer, Sol–gel Sciences: The Processing and the Chemistry of Sol-gel Processing (San Diego, CA: Academic Press, 1990).Google Scholar
  39. 39.
    M. Kakihana, J. Sol Gel. Sci. Technol. 6, 7 (1996).CrossRefGoogle Scholar
  40. 40.
    W. Li and H. Cheng, J. Alloys Compd. 448, 287 (2008).CrossRefGoogle Scholar
  41. 41.
    M.H. Habibi and F. Fakhri, Synth. React. Inorg. Met. Org. Chem. 46, 847 (2016).CrossRefGoogle Scholar
  42. 42.
    B.J. Kennedy and Q. Zhou, J. Solid State Chem. 181, 2227 (2008).CrossRefGoogle Scholar
  43. 43.
    M. Tovar, R. Torabi, C. Welker, and F. Fleischer, Phys. B: Condens. Matter. 385, 196 (2006).CrossRefGoogle Scholar
  44. 44.
    Y. Bessekhouad and M. Trari, Int J. Hydrogen Energy 27, 357 (2002).CrossRefGoogle Scholar
  45. 45.
    B.D. Cullity, Elements of X-Ray Diffraction (New York: Prentice-Hall, 2001).Google Scholar
  46. 46.
    G.-Y. Guo, Y.-L. Chen, and W.-J. Ying, Mater. Chem. Phys. 84, 308 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryMalek Ashtar University of TechnologyTehranIran

Personalised recommendations