Advertisement

Ab Initio Study of Mono-Layer Graphene as an Electronical or Optical Sensor for Detecting B, N, O and F Atoms

  • M. Goudarzi
  • S. S. ParhizgarEmail author
  • J. Beheshtian
Article

Abstract

Using a first-principles calculation, the electronic and optical properties of graphene with B, N, O and F atom adsorption was studied. For the adatoms studied, distortion of the graphene layer is significant and causes a change in hybridization from sp2 to sp3. Also, it was found that B atom adsorption on graphene is n-type, F and O atoms adsorption on graphene are p-type semiconductor, while N adsorption has a metal behavior. N-absorbed graphene shows a magnetic moment, while B-, O-, and F-absorbed graphene show no magnetic moment. The optical absorption spectra of monolayer graphene have been calculated for the cases of in-plane (Ec), out of plane (E||c) and 45° polarization of light to the plane of the graphene layer and have been compared with atom adsorption on graphene. For (Ec), it was observed that the graphene was an optical sensor for finding F gas. In (E||c), it is an optical sensor for detecting the B atom in the environment.

Keywords

Graphene density functional theory (DFT) structural and optical properties absorption coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S. Morzov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    W. Han, R.K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotechnol. 9, 794 (2014).CrossRefGoogle Scholar
  3. 3.
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D.T.F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Allaedini, E. Mahmoudi, P. Aminayi, S. Masrinda Tasrini, and A.W. Mohammad, Synth. Met. 220, 72 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Rouff, Nature 442, 282 (2006).CrossRefGoogle Scholar
  6. 6.
    F. Schedin, A.K. Geim, S.V. Moeozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).CrossRefGoogle Scholar
  7. 7.
    I.I. Barbolina, K.S. Novoselov, S.V. Morozov, S.V. Dubonos, M. Missous, A.O. Volkov, D.A. Chiristian, I.V. Grigorieva, and A.K. Geim, Appl. Phys. Lett. 88, 013901 (2006).CrossRefGoogle Scholar
  8. 8.
    C.A. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, and D. Zho, Adv. Mater. 20, 3289 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Lu, B.R. Goldsmith, N.J. Kubert, and A.T.C. Johnson, Appl. Phys. Lett. 97, 083107 (2010).CrossRefGoogle Scholar
  10. 10.
    Z.M. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 276 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Khantha, N.A. Cordero, L.M. Molina, J.A. Alonso, and L.A. Girifalco, Phys. Rev. B 70, 125422 (2004).CrossRefGoogle Scholar
  12. 12.
    D.M. Duffy and J.A. Blackman, Phys. Rev. B 58, 7443 (1998).CrossRefGoogle Scholar
  13. 13.
    Y. Yagi, T.M. Briere, H.F. Marcel Sluiter, V. Kumar, A.A. Farajian, and Y. Kawazoe, Phys. Rev. B 69, 075414 (2004).CrossRefGoogle Scholar
  14. 14.
    D.M. Duffy and J.A. Blackman, Surf. Sci. 415, L1016 (1998).CrossRefGoogle Scholar
  15. 15.
    E.J. Dopluck, M. Scheffler, and P. Lindan, J. Phys. Rev. Lett. 92, 22 (2004).Google Scholar
  16. 16.
    Y.H. Zhang, L.F. Han, Y.H. Xiao, D.Z. Jia, Z.H. Guo, and F. Li, Comput. Mater. Sci. 69, 222 (2013).CrossRefGoogle Scholar
  17. 17.
    P.O. Lehtinen, A.S. Foster, A. Auela, A. Krasheninnikov, K. Nordlund, and R.M. Nieminen, Phys. Rev. Lett. 91, 017202 (2003).CrossRefGoogle Scholar
  18. 18.
    O.V. Sedelnikova, L.G. Bulusheva, and A.V. Okotrub, J. Chem. Phys. 134, 244707 (2011).CrossRefGoogle Scholar
  19. 19.
    A.G. Marinopoulos, L. Reining, A. Rubio, and V. Olevano, Phy. Rev. B 69, 245419 (2004).CrossRefGoogle Scholar
  20. 20.
    A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, and L. Reining, Appl. Phys. A 78, 1157 (2004).CrossRefGoogle Scholar
  21. 21.
    P. Rani, G.S. Dubey, and V.K. Jindal, Physica E 62, 28 (2014).CrossRefGoogle Scholar
  22. 22.
    T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, and P.R. Briddon, Phys. Rev. B 77, 233406 (2008).CrossRefGoogle Scholar
  23. 23.
    M.S. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002).CrossRefGoogle Scholar
  24. 24.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
  25. 25.
    W. Kohn and L.J. Shem, Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. L 77, 3865 (1996).CrossRefGoogle Scholar
  27. 27.
    R. Chang, Physical Chemistry for the Biosciences (Sausalito: University Science Books, cop, 2005), pp. 450–455.Google Scholar
  28. 28.
    P.A. Webb, Introduction to Chemical Adsorption Analytical Techniques and Their Applications to Catalysis (San Diego: MIC Technical Publications, 2003), pp. 1–12.Google Scholar
  29. 29.
    M. Kralik, Chem. Pap. 68, 1625 (2014).Google Scholar
  30. 30.
    R. Satio, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (London: Imperial College, 1998).Google Scholar
  31. 31.
    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  32. 32.
    S. Agnoli and M. Favarob, J. Mater. Chem. A 4, 5002 (2016).CrossRefGoogle Scholar
  33. 33.
    M. Wu, C. Cao, and J.Z. Jiang, Nanotechnology 21, 505202 (2010).CrossRefGoogle Scholar
  34. 34.
    L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Condens. Matter Phys. 21, 4726 (2009).Google Scholar
  35. 35.
    L. Chen, Y. Ouyang, H. Pan, Y. Sun, and D. Li, J. Magn. Magn. Mater. 323, 547 (2011).CrossRefGoogle Scholar
  36. 36.
    L. Feng, Simulation of Crystal, Electronic and Magnetic Structures and gas Adsorption of Two Dimensional Materials (Wollongong: University of Wollongong, Thesis Collections, 2014).Google Scholar
  37. 37.
    S.S. Zumdahl, Chemical Principles, 5th ed. (Boston: Houghton Mifflin Company, 2005), p. 587.Google Scholar
  38. 38.
    K. Nakada and A. Ishii, in Graphene Simulation, ed. J.R. Gong (Croatia: InTech, 2011), p. 3Google Scholar
  39. 39.
    R.I. Masel and R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces (New York: Wiley, 1996), pp. 202–203.Google Scholar
  40. 40.
    S. Cecie, Biology: Concepts and Applications (Cole: Thomson Brooks, 2005), pp. 160–161.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Plasma Physics Center, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Chemistry Department, Faculty of SciencesShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations