Advertisement

Approach to Defect-Free Lifetime and High Electron Density in CdTe

  • S. K. SwainEmail author
  • J. N. Duenow
  • S. W. Johnston
  • M. Amarasinghe
  • J. J. McCoy
  • W. K. Metzger
  • K. G. Lynn
Article
  • 8 Downloads

Abstract

Achieving simultaneously high carrier density and lifetime is important for II–VI semiconductor-based applications such as photovoltaics and infrared detectors; however, it is a challenging task. In this work, high purity CdTe single crystals doped with indium (In) were grown by vertical Bridgman melt growth under carefully controlled stoichiometry. Two-photon excitation time-resolved photoluminescence was employed to measure bulk recombination lifetime by eliminating surface recombination effects. By adjusting stoichiometry with post growth annealing, high-net free carrier density approaching 1018 cm−3 was achieved simultaneously with lifetime approaching the radiative limit by suppressing non-radiative recombination centers.

Keywords

n-type CdTe time resolved photoluminescence carrier density life time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    M.O. Reese, A. Kanevce, T.M. Barnes, S.A. Jensen, and W.K. Metzger, J. Appl. Phys. 121, 214506 (2017).CrossRefGoogle Scholar
  2. 2.
    S.-H. Wei and S.B. Zhang, Phys. Rev. B. 66, 155211 (2002).CrossRefGoogle Scholar
  3. 3.
    W. Stadler, D.M. Hofmann, H.C. Alt, T. Muschik, B.K. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K.W. Benz, Phys. Rev. B. 51, 10619 (1995).CrossRefGoogle Scholar
  4. 4.
    S. Seto, K. Suzuki, V.N. Abastillas Jr., and K. Inabe, J. Cryst. Growth 214, 974 (2000).CrossRefGoogle Scholar
  5. 5.
    N. Krsmanovic, K.G. Lynn, M.H. Weber, R. Tjossem, Th. Gessmann, Cs. Szeles, E.E. Eissler, J.P. Flint, and H.L. Glass, Phys. Rev. B. 62, 16279 (2000).CrossRefGoogle Scholar
  6. 6.
    B. Segall, M.R. Lorenz, and R.E. Halsted, Phys. Rev. 129, 2471 (1963).CrossRefGoogle Scholar
  7. 7.
    M. Becerril, O. Zelaya-Angel, R. Ramĺrez-Bon, F.J. Espinoza-Beltrán, and K. González-Hernández, Appl. Phys. Lett. 70, 452 (1997).CrossRefGoogle Scholar
  8. 8.
    O.S. Ogedengbe, C.H. Swartz, P.A.R.D. Jayathilaka, J.E. Petersen, S. Sohal, E.G. LeBlanc, M. Edirisooriya, K.N. Zaunbrecher, A. Wang, T.M. Barnes, and T.H. Myers, J. Electron. Mater. 46, 5424 (2017).CrossRefGoogle Scholar
  9. 9.
    J. Ma, D. Kuciauskas, D. Albin, R. Bhattacharya, M. Reese, T. Barnes, J.V. Li, T. Gessert, and S.-H. Wei, Phys. Rev. Lett. 111, 067402 (2013).CrossRefGoogle Scholar
  10. 10.
    J.-H. Yang, W.K. Metzger, and S.-H. Wei, Appl. Phys. Lett. 111, 042106 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Farrell, T. Barnes, W.K. Metzger, J.H. Park, R. Kodama, and S. Sivananthan, J. Electron. Mater. 44, 3202 (2015).CrossRefGoogle Scholar
  12. 12.
    M.O. Reese, C.L. Perkins, J.M. Burst, S. Farrell, T.M. Barnes, S.W. Johnston, D. Kuciauskas, T.A. Gessert, and W.K. Metzger, J. Appl. Phys. 118, 155305 (2015).CrossRefGoogle Scholar
  13. 13.
    M.O. Reese, J.M. Burst, C.L. Perkins, A. Kanevce, S.W. Johnston, D. Kuciauskas, T.M. Barnes, and W.K. Metzger, IEEE J. Photovolt. 5, 382 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Kuciauskas, A. Kanevce, J.M. Burst, J.N. Duenow, R. Dhere, D.S. Albin, D.H. Levi, and R.K. Ahrenkiel, IEEE J. Photovolt. 3, 1319 (2013).CrossRefGoogle Scholar
  15. 15.
    D.M. Hofmann, P. Omling, H.G. Grimmeiss, B.K. Meyer, K.W. Benz, and D. Sinerius, Phys. Rev. B. 45, 6247 (1992).CrossRefGoogle Scholar
  16. 16.
    J.-H. Yang, L. Shi, L.-W. Wang, and S.-H. Wei, Sci. Rep. 6, 21712 (2016).CrossRefGoogle Scholar
  17. 17.
    R. Soundararajan, K.G. Lynn, S. Awadallah, C. Szeles, and S.-H. Wei, J. Electron. Mater. 35, 1333 (2006).CrossRefGoogle Scholar
  18. 18.
    M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K.W. Benz, W. Stadler, D.M. Hofmann, and B.K. Meyer, J. Appl. Phys. 84, 6689 (1998).CrossRefGoogle Scholar
  19. 19.
    P. Rudolph, A. Engel, I. Schentke, and A. Grochocki, J. Cryst. Growth 147, 297 (1995).CrossRefGoogle Scholar
  20. 20.
    J.H. Greenberg, V.N. Guskov, V.B. Lazarev, and O.V. Shebershneva, J. Solid State Chem. 102, 382 (1993).CrossRefGoogle Scholar
  21. 21.
    G. Yang, A.E. Bolotnikov, Y. Cui, G.S. Camarda, A. Hossain, and R.B. James, J. Cryst. Growth 311, 99 (2008).CrossRefGoogle Scholar
  22. 22.
    J.M. Burst, J.N. Duenow, D.S. Albin, E. Colegrove, M.O. Reese, J.A. Aguiar, C.S. Jiang, M.K. Patel, M.M. Al-Jassim, D. Kuciauskas, S. Swain, T. Ablekim, K.G. Lynn, and W.K. Metzger, Nat. Energy 1, 16015 (2016).CrossRefGoogle Scholar
  23. 23.
    R. Cohen, V. Lyahovitskaya, E. Poles, A. Liu, and Y. Rosenwaks, Appl. Phys. Lett. 73, 1400 (1998).CrossRefGoogle Scholar
  24. 24.
    C.H. Swartz, M. Edirisooriya, E.G. LeBlanc, O.C. Noriega, P.A.R.D. Jayathilaka, O.S. Ogedengbe, B.L. Hancock, M. Holtz, T.H. Myers, and K.N. Zaunbrecher, Appl. Phys. Lett. 105, 222107 (2014).CrossRefGoogle Scholar
  25. 25.
    G. Benz and R. Conradt, Phys. Rev. B. 16, 843 (1977).CrossRefGoogle Scholar
  26. 26.
    R.K. Ahrenkiel and S.W. Johnston, Sol. Energy Mater. Sol. Cells 93, 645 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • S. K. Swain
    • 1
    Email author
  • J. N. Duenow
    • 2
  • S. W. Johnston
    • 2
  • M. Amarasinghe
    • 2
  • J. J. McCoy
    • 1
  • W. K. Metzger
    • 2
  • K. G. Lynn
    • 1
  1. 1.Center for Materials ResearchWashington State UniversityPullmanUSA
  2. 2.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations