Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density

  • Jianyu Zhang
  • Sikander Ali
  • Fugui Liu
  • Ahmad Ali
  • Kang Wang
  • Xitao WangEmail author


We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F g−1, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh kg−1.


Phosphorus-doped graphene supercapacitor wide voltage high specific capacitance high energy density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Q. Wang, J. Yan, and Z. Fan, Energy Environ. 3, 729 (2016).CrossRefGoogle Scholar
  2. 2.
    Y. Zhu, S. Murali, and M.D. Stoller, Science 6037, 1537 (2011).CrossRefGoogle Scholar
  3. 3.
    H. Kim, K.Y. Park, and J. Hong, Sci. Rep. 2973, 5278 (2014).Google Scholar
  4. 4.
    Y. Xu, K. Sheng, and C. Li, ACS Nano 7, 4324 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Fan, W. Zeng, and Q. Niu, Nanoscale Res. Lett. 1, 192 (2015).CrossRefGoogle Scholar
  6. 6.
    N. Zhang, N. Gao, C. Fu, D. Liu, S. Li, and L. Jiang, Electrochim. Acta 235, 340 (2017).CrossRefGoogle Scholar
  7. 7.
    M.M. Huq, C.T. Hsieh, and C.Y. Ho, Diam. Relat. Mater. 62, 58 (2015).CrossRefGoogle Scholar
  8. 8.
    D. Yu and L. Dai, J. Phys. Chem. Lett. 2, 467 (2009).Google Scholar
  9. 9.
    L. Wang, L. Sun, and C. Tian, RSC Adv. 22, 8359 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Yang, Y.X. Yin, and Y.G. Guo, Adv. Energy Mater. 8, 726 (2014)Google Scholar
  11. 11.
    L. Gang, Z. Sun, and Y. Zhang, J. Porous Mater. 6, 1 (2017).Google Scholar
  12. 12.
    L. Dong, C. Hu, and X. Huang, Chem. Asian J. 12, 2609 (2016).Google Scholar
  13. 13.
    H. Jin, X. Wang, and Z. Gu, J. Power Sources 273, 1156 (2015).CrossRefGoogle Scholar
  14. 14.
    T.T. Lin, W.D. Wang, and Q.F. Lü, J. Anal. Appl. Pyrolysis 113, 545 (2015).CrossRefGoogle Scholar
  15. 15.
    F. Hao, L. Li, and X. Zhang, Mater. Res. Bull. 66, 88 (2015).CrossRefGoogle Scholar
  16. 16.
    S.F. Shirazi, S. Gharehkhani, and H. Yarmand, Mater. Lett. 9, 192 (2015).CrossRefGoogle Scholar
  17. 17.
    Y. Li, T.X. Shang, and J.M. Gao, RSC Adv. 31, 19098 (2017).CrossRefGoogle Scholar
  18. 18.
    J. Zhang, Z. Zhang, and X. Zhao, RSC Adv. 127, 104822 (2015).CrossRefGoogle Scholar
  19. 19.
    F. Yang, Z. Zhang, and K. Du, Carbon 91, 88 (2015).CrossRefGoogle Scholar
  20. 20.
    Y.F. Li, Y.Z. Liu, and Y. Liang, Appl. Phys. A 9, 566 (2017).CrossRefGoogle Scholar
  21. 21.
    Y.Y. Yin, R.Y. Li, and Z.J. Li, Electrochim. Acta 125, 330 (2014).CrossRefGoogle Scholar
  22. 22.
    C. Zhang, N. Mahmood, and H. Yin, Adv. Mater. 35, 4932 (2013).CrossRefGoogle Scholar
  23. 23.
    D. Zhang, M. Han, and Y. Li, J. Power Sources 372, 260 (2017).CrossRefGoogle Scholar
  24. 24.
    Q. Li, M. Hu, and K. Wang, Catal. Today 2, 314 (2018)Google Scholar
  25. 25.
    P. Karthika, N. Rajalakshmi, and K.S. Dhathathreyan, J. Nanosci. Nanotechnol. 3, 1746 (2013).CrossRefGoogle Scholar
  26. 26.
    Y. Wen, B. Wang, and C. Huang, Chemistry 9, 3520 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Yi, Y. Qing, and C.T. Wu, J. Power Sources 351, 130 (2017).CrossRefGoogle Scholar
  28. 28.
    W. Yang, W. Yang, and L. Kong, Carbon 7, 1042 (2017).Google Scholar
  29. 29.
    V. Thirumal, A. Pandurangan, and R. Jayavel, J. Mater. Sci. Mater. Electron. 8, 6319 (2015).CrossRefGoogle Scholar
  30. 30.
    Y. Song, Z. Li, and K.K. Guo, Nanoscale 10, 1039 (2016).Google Scholar
  31. 31.
    Y.Q. Dang, S.Z. Ren, and G. Liu, Nanomaterials 11, 212 (2016).CrossRefGoogle Scholar
  32. 32.
    L.X. Jin, Z. Jin, and X. Wei, Electrochim. Acta 190, 923 (2016).CrossRefGoogle Scholar
  33. 33.
    H. Pan, S. Zhu, and L. Mao, J. Inorg. Organomet. Polym. Mater. 2, 179 (2015).CrossRefGoogle Scholar
  34. 34.
    J.X. Shen and Z. Yao, Technol. Dev. Chem. Ind. 9, 3018 (2016).Google Scholar
  35. 35.
    M. Lojka, O. Jankovský, and D. Sedmidubský, New J. Chem. 42, 10 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jianyu Zhang
    • 1
    • 2
  • Sikander Ali
    • 1
  • Fugui Liu
    • 1
  • Ahmad Ali
    • 1
  • Kang Wang
    • 2
  • Xitao Wang
    • 2
    Email author
  1. 1.State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical EngineeringHebei University of TechnologyTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations